版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省宜春市2024年高考仿真卷數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,設(shè)為內(nèi)一點(diǎn),且,則與的面積之比為A. B.C. D.2.等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,有下列說(shuō)法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個(gè)位置,使得;(3)設(shè)二面角的平面角為,則;(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,則點(diǎn)P的軌跡為橢圓.其中,正確說(shuō)法的個(gè)數(shù)是()A.1 B.2 C.3 D.43.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.4.在中,角,,的對(duì)邊分別為,,,若,,,則()A. B.3 C. D.45.函數(shù)在的圖象大致為()A. B.C. D.6.已知,,則的大小關(guān)系為()A. B. C. D.7.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣28.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.9.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.10.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準(zhǔn)線相切.其中,所有正確判斷的序號(hào)是()A.①②③ B.①② C.①③ D.②③11.若時(shí),,則的取值范圍為()A. B. C. D.12.已知函數(shù)滿足當(dāng)時(shí),,且當(dāng)時(shí),;當(dāng)時(shí),且).若函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)恰好有3對(duì),則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù).若在區(qū)間上恒成立.則實(shí)數(shù)的取值范圍是__________.14.在棱長(zhǎng)為6的正方體中,是的中點(diǎn),點(diǎn)是面,所在平面內(nèi)的動(dòng)點(diǎn),且滿足,則三棱錐的體積的最大值是__________.15.在的二項(xiàng)展開(kāi)式中,所有項(xiàng)的二項(xiàng)式系數(shù)之和為256,則_______,項(xiàng)的系數(shù)等于________.16.若正實(shí)數(shù)x,y,滿足x+2y=5,則x2三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)零點(diǎn),().(i)求的取值范圍;(ii)求證:隨著的增大而增大.18.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.20.(12分)為響應(yīng)“堅(jiān)定文化自信,建設(shè)文化強(qiáng)國(guó)”,提升全民文化修養(yǎng),引領(lǐng)學(xué)生“讀經(jīng)典用經(jīng)典”,某廣播電視臺(tái)計(jì)劃推出一檔“閱讀經(jīng)典”節(jié)目.工作人員在前期的數(shù)據(jù)采集中,在某高中學(xué)校隨機(jī)抽取了120名學(xué)生做調(diào)查,統(tǒng)計(jì)結(jié)果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是7:5,女生中喜歡閱讀中國(guó)古典文學(xué)和不喜歡的比例是5:3.(1)填寫(xiě)下面列聯(lián)表,并根據(jù)聯(lián)表判斷是否有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系?男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)不喜歡閱讀中國(guó)古典文學(xué)總計(jì)(2)為做好文化建設(shè)引領(lǐng),實(shí)驗(yàn)組把該校作為試點(diǎn),和該校的學(xué)生進(jìn)行中國(guó)古典文學(xué)閱讀交流.實(shí)驗(yàn)人員已經(jīng)從所調(diào)查的120人中篩選出4名男生和3名女生共7人作為代表,這7個(gè)代表中有2名男生代表和2名女生代表喜歡中國(guó)古典文學(xué).現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會(huì),記為參加會(huì)議的人中喜歡古典文學(xué)的人數(shù),求5的分布列及數(shù)學(xué)期望附表及公式:.21.(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)如圖,在四棱錐中,平面平面,.(Ⅰ)求證:平面;(Ⅱ)若銳二面角的余弦值為,求直線與平面所成的角.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
作交于點(diǎn),根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點(diǎn),則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點(diǎn)睛】本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎(chǔ)題,作出合適的輔助線是本題的關(guān)鍵.2、C【解析】
解:對(duì)于(1),當(dāng)CD⊥平面ABE,且E在AB的右上方時(shí),E到平面BCD的距離最大,當(dāng)CD⊥平面ABE,且E在AB的左下方時(shí),E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對(duì)于(2),連接DE,若存在某個(gè)位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進(jìn)一步可得AE=DE,此時(shí)E﹣ABD為正三棱錐,故(2)正確;對(duì)于(3),取AB中點(diǎn)O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對(duì)于(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,P到BC的距離為:dP﹣BC,因?yàn)椋?,所以點(diǎn)P的軌跡為橢圓.(4)正確.故選:C.點(diǎn)睛:該題考查的是有關(guān)多面體和旋轉(zhuǎn)體對(duì)應(yīng)的特征,以幾何體為載體,考查相關(guān)的空間關(guān)系,在解題的過(guò)程中,需要認(rèn)真分析,得到結(jié)果,注意對(duì)知識(shí)點(diǎn)的靈活運(yùn)用.3、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點(diǎn)睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類(lèi)討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.4、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。5、C【解析】
先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項(xiàng);當(dāng)時(shí),,所以排除A選項(xiàng);當(dāng)時(shí),,排除D選項(xiàng);綜上可知,C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.6、D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對(duì)數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對(duì)數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最??;而由對(duì)數(shù)換底公式化簡(jiǎn)可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點(diǎn)睛】本題考查了指數(shù)式與對(duì)數(shù)式的化簡(jiǎn)變形,對(duì)數(shù)換底公式及基本不等式的簡(jiǎn)單應(yīng)用,作差法比較大小,屬于中檔題.7、D【解析】
化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8、D【解析】
,,得解.【詳解】,,,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見(jiàn)的方法.9、B【解析】
設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.10、B【解析】
由題意,可設(shè)直線的方程為,利用韋達(dá)定理判斷第一個(gè)結(jié)論;將代入拋物線的方程可得,,從而,,進(jìn)而判斷第二個(gè)結(jié)論;設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,進(jìn)而判斷第三個(gè)結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對(duì)稱(chēng)性可知,,兩點(diǎn)關(guān)于軸對(duì)稱(chēng),所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以③不正確.故選:B.【點(diǎn)睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識(shí),考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.11、D【解析】
由題得對(duì)恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對(duì)恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問(wèn)題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問(wèn)題,可采用參變量分離法去求解.12、C【解析】
先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱(chēng)的圖象,分類(lèi)利用圖像列出有3個(gè)交點(diǎn)時(shí)滿足的條件,解之即可.【詳解】先作出函數(shù)在上的部分圖象,再作出關(guān)于原點(diǎn)對(duì)稱(chēng)的圖象,如圖所示,當(dāng)時(shí),對(duì)稱(chēng)后的圖象不可能與在的圖象有3個(gè)交點(diǎn);當(dāng)時(shí),要使函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng)后的圖象與所作的圖象有3個(gè)交點(diǎn),則,解得.故選:C.【點(diǎn)睛】本題考查利用函數(shù)圖象解決函數(shù)的交點(diǎn)個(gè)數(shù)問(wèn)題,考查學(xué)生數(shù)形結(jié)合的思想、轉(zhuǎn)化與化歸的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因?yàn)樵趨^(qū)間上恒成立,解得即故答案為:【點(diǎn)睛】本題考查一元二次不等式及函數(shù)的綜合問(wèn)題,屬于基礎(chǔ)題.14、【解析】
根據(jù)與相似,,過(guò)作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長(zhǎng)為6的正方體中,是的中點(diǎn),點(diǎn)是面所在平面內(nèi)的動(dòng)點(diǎn),且滿足,又,∴與相似∴,即,過(guò)作于,設(shè),,∴,化簡(jiǎn)得:,,根據(jù)函數(shù)單調(diào)性判斷,時(shí),取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點(diǎn)睛】本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應(yīng)用,難度一般.15、81【解析】
根據(jù)二項(xiàng)式系數(shù)和的性質(zhì)可得n,再利用展開(kāi)式的通項(xiàng)公式求含項(xiàng)的系數(shù)即可.【詳解】由于所有項(xiàng)的二項(xiàng)式系數(shù)之和為,,故的二項(xiàng)展開(kāi)式的通項(xiàng)公式為,令,求得,可得含x項(xiàng)的系數(shù)等于,故答案為:8;1.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于中檔題.16、8【解析】
分析:將題中的式子進(jìn)行整理,將x+1當(dāng)做一個(gè)整體,之后應(yīng)用已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問(wèn)題的求解方法,即可求得結(jié)果.詳解:x2-3x+1+2點(diǎn)睛:該題屬于應(yīng)用基本不等式求最值的問(wèn)題,解決該題的關(guān)鍵是需要對(duì)式子進(jìn)行化簡(jiǎn),轉(zhuǎn)化,利用整體思維,最后注意此類(lèi)問(wèn)題的求解方法-------相乘,即可得結(jié)果.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)(i)(ii)證明見(jiàn)解析【解析】
(1)求出導(dǎo)函數(shù),分類(lèi)討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個(gè)零點(diǎn)求解參數(shù)取值范圍;(ii)設(shè),通過(guò)轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因?yàn)?,所以?dāng)時(shí),在上恒成立,所以在上單調(diào)遞增,當(dāng)時(shí),的解集為,的解集為,所以的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為;(2)(i)由(1)可知,當(dāng)時(shí),在上單調(diào)遞增,至多一個(gè)零點(diǎn),不符題意,當(dāng)時(shí),因?yàn)橛袃蓚€(gè)零點(diǎn),所以,解得,因?yàn)?,且,所以存在,使得,又因?yàn)?,設(shè),則,所以單調(diào)遞增,所以,即,因?yàn)?,所以存在,使得,綜上,;(ii)因?yàn)椋?,因?yàn)?,所以,設(shè),則,所以,解得,所以,所以,設(shè),則,設(shè),則,所以單調(diào)遞增,所以,所以,即,所以單調(diào)遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點(diǎn)睛】此題考查利用導(dǎo)函數(shù)處理函數(shù)的單調(diào)性,根據(jù)函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,通過(guò)等價(jià)轉(zhuǎn)化證明與零點(diǎn)相關(guān)的命題.18、(Ⅰ)見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)求導(dǎo)得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設(shè),求,令,故在單調(diào)遞增,存在使得,,計(jì)算得到答案.【詳解】(Ⅰ)(),當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增;當(dāng)時(shí),在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)(),即,().令(),則,令,,故在單調(diào)遞增,注意到,,于是存在使得,可知在單調(diào)遞增,在單調(diào)遞減.∴.綜上知,.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,恒成立問(wèn)題,意在考查學(xué)生對(duì)于導(dǎo)數(shù)知識(shí)的綜合應(yīng)用能力.19、(1);(2).【解析】
(1)分類(lèi)討論去絕對(duì)值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對(duì)值,轉(zhuǎn)化為在時(shí)恒成立,得到,,在恒成立,從而得到的取值范圍.【詳解】(1)當(dāng)時(shí),,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),,因?yàn)?,,所以,又,,,?不等式恒成立,即在時(shí)恒成立,不等式恒成立必須,,解得.所以,解得,結(jié)合,所以,即的取值范圍為.【點(diǎn)睛】本題考查分類(lèi)討論解絕對(duì)值不等式,含有絕對(duì)值的不等式的恒成立問(wèn)題.屬于中檔題.20、(1)見(jiàn)解析,沒(méi)有(2)見(jiàn)解析,【解析】
(1)根據(jù)題目所給數(shù)據(jù)填寫(xiě)列聯(lián)表,計(jì)算出的值,由此判斷出沒(méi)有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系.(2)先判斷出的所有可能取值,然后根據(jù)古典概型概率計(jì)算公式,計(jì)算出分布列并求得數(shù)學(xué)期望.【詳解】(1)男生女生總計(jì)喜歡閱讀中國(guó)古典文學(xué)423072不喜歡閱讀中國(guó)古典文學(xué)301848總計(jì)7248120所以,沒(méi)有的把握認(rèn)為喜歡閱讀中國(guó)古典文學(xué)與性別有關(guān)系.(2)設(shè)參加座談會(huì)的男生中喜歡中國(guó)古典文學(xué)的人數(shù)為,女生中喜歡
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療捐贈(zèng)資產(chǎn)規(guī)范管理指南
- 體育館泵房工程承包合同
- 消防管理協(xié)管員操作規(guī)程
- 水電開(kāi)發(fā)項(xiàng)目備案登記
- 塑料工程分包合同
- 醫(yī)藥招投標(biāo)質(zhì)量管理體系建設(shè)
- 場(chǎng)地布置燈具租賃合同
- 魚(yú)塘養(yǎng)殖企業(yè)風(fēng)險(xiǎn)管理承包合同
- 通訊設(shè)備行業(yè)購(gòu)銷(xiāo)合同管理規(guī)范
- 四川省旅游局聘用合同管理規(guī)定
- 【9道期末】安徽省宣城市2023-2024學(xué)年九年級(jí)上學(xué)期期末道德與法治試題(含解析)
- 2024年醫(yī)藥行業(yè)年終總結(jié).政策篇 易聯(lián)招采2024
- 《工程造價(jià)專(zhuān)業(yè)應(yīng)用型本科畢業(yè)設(shè)計(jì)指導(dǎo)標(biāo)準(zhǔn)》
- 倉(cāng)庫(kù)主管2025年終總結(jié)及2025工作計(jì)劃
- 2024年01月11396藥事管理與法規(guī)(本)期末試題答案
- 《臨床帶教實(shí)施要求》課件
- 2023年內(nèi)蒙古興安盟事業(yè)單位秋專(zhuān)項(xiàng)人才引進(jìn)筆試真題
- 2024年保安員(初級(jí))試題及答案
- 偵查學(xué)期末考試試題及答案
- 蔬菜采購(gòu)框架合同模板
- 中國(guó)類(lèi)風(fēng)濕關(guān)節(jié)炎診療指南(2024版)解讀
評(píng)論
0/150
提交評(píng)論