重慶鐵路中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第1頁(yè)
重慶鐵路中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第2頁(yè)
重慶鐵路中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第3頁(yè)
重慶鐵路中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第4頁(yè)
重慶鐵路中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶鐵路中學(xué)2023-2024學(xué)年高三最后一卷數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.2.設(shè)點(diǎn)是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn),若,則()A. B. C. D.3.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.4.若復(fù)數(shù),則()A. B. C. D.205.函數(shù)的大致圖象為()A. B.C. D.6.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.7.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.8.已知等比數(shù)列的前項(xiàng)和為,且滿足,則的值是()A. B. C. D.9.中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或10.設(shè)集合,則()A. B. C. D.11.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.高三(1)班共有56人,學(xué)號(hào)依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為4的樣本,已知學(xué)號(hào)為6,34,48的同學(xué)在樣本中,那么還有一個(gè)同學(xué)的學(xué)號(hào)應(yīng)為.14.在平面直角坐標(biāo)系中,若函數(shù)在處的切線與圓存在公共點(diǎn),則實(shí)數(shù)的取值范圍為_____.15.已知正項(xiàng)等比數(shù)列中,,則__________.16.正方體的棱長(zhǎng)為2,是它的內(nèi)切球的一條弦(我們把球面上任意兩點(diǎn)之間的線段稱為球的弦),為正方體表面上的動(dòng)點(diǎn),當(dāng)弦的長(zhǎng)度最大時(shí),的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.18.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.19.(12分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動(dòng)點(diǎn),求的最大值.20.(12分)設(shè)橢圓的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為.(1)求橢圓的方程;(2)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說明理由.21.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.22.(10分)車工劉師傅利用數(shù)控車床為某公司加工一種高科技易損零件,對(duì)之前加工的100個(gè)零件的加工時(shí)間進(jìn)行統(tǒng)計(jì),結(jié)果如下:加工1個(gè)零件用時(shí)(分鐘)20253035頻數(shù)(個(gè))15304015以加工這100個(gè)零件用時(shí)的頻率代替概率.(1)求的分布列與數(shù)學(xué)期望;(2)劉師傅準(zhǔn)備給幾個(gè)徒弟做一個(gè)加工該零件的講座,用時(shí)40分鐘,另外他打算在講座前、講座后各加工1個(gè)該零件作示范.求劉師傅講座及加工2個(gè)零件作示范的總時(shí)間不超過100分鐘的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)命題的否定,可以寫出:,所以選C.2、B【解析】∵∵∴∵,∴∴故選B點(diǎn)睛:本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、長(zhǎng)軸、短軸等橢圓的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.3、C【解析】

根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫妫矫?,所?又,,所以平面,則.易知,.在中,,即,化簡(jiǎn)得.在中,,.所以.因?yàn)椋?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.4、B【解析】

化簡(jiǎn)得到,再計(jì)算模長(zhǎng)得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.5、A【解析】

利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項(xiàng)正確.【詳解】,排除掉C,D;,,,.故選:A.【點(diǎn)睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點(diǎn),采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.6、A【解析】

觀察可知,這個(gè)幾何體由兩部分構(gòu)成,:一個(gè)半圓柱體,底面圓的半徑為1,高為2;一個(gè)半球體,半徑為1,按公式計(jì)算可得體積?!驹斀狻吭O(shè)半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c(diǎn)睛】本題通過三視圖考察空間識(shí)圖的能力,屬于基礎(chǔ)題。7、C【解析】

利用對(duì)數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計(jì)算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點(diǎn)睛】本題考查對(duì)數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時(shí)選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.8、C【解析】

利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).9、A【解析】

根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:

①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線的離心率2或.

故選:A.【點(diǎn)睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.10、C【解析】

解對(duì)數(shù)不等式求得集合,由此求得兩個(gè)集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點(diǎn)睛】本小題主要考查對(duì)數(shù)不等式的解法,考查集合交集的概念和運(yùn)算,屬于基礎(chǔ)題.11、D【解析】

先把變形為,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出,得到其坐標(biāo)可得答案.【詳解】解:由,得,所以,其在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限故選:D【點(diǎn)睛】此題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.12、C【解析】

如圖所示,當(dāng)點(diǎn)C位于垂直于面的直徑端點(diǎn)時(shí),三棱錐的體積最大,設(shè)球的半徑為,此時(shí),故,則球的表面積為,故選C.考點(diǎn):外接球表面積和椎體的體積.二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】

根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號(hào)為第一組,15至28號(hào)為第二組,29號(hào)至42號(hào)為第三組,43號(hào)至56號(hào)為第四組.而學(xué)號(hào)6,34,48分別是第一、三、四組的學(xué)號(hào),所以還有一個(gè)同學(xué)應(yīng)該是15+6-1=20號(hào),故答案為20.14、【解析】

利用導(dǎo)數(shù)的幾何意義可求得函數(shù)在處的切線,再根據(jù)切線與圓存在公共點(diǎn),利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義求解切線方程的問題,同時(shí)也考查了根據(jù)直線與圓的位置關(guān)系求解參數(shù)范圍的問題,屬于基礎(chǔ)題.15、【解析】

利用等比數(shù)列的通項(xiàng)公式將已知兩式作商,可得,再利用等比數(shù)列的性質(zhì)可得,再利用等比數(shù)列的通項(xiàng)公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式以及等比中項(xiàng),需熟記公式,屬于基礎(chǔ)題.16、【解析】

由弦的長(zhǎng)度最大可知為球的直徑.由向量的線性運(yùn)用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設(shè)球心為,則當(dāng)弦的長(zhǎng)度最大時(shí),為球的直徑,由向量線性運(yùn)算可知正方體的棱長(zhǎng)為2,則球的半徑為1,,所以,而所以,即故答案為:.【點(diǎn)睛】本題考查了空間向量線性運(yùn)算與數(shù)量積的運(yùn)算,正方體內(nèi)切球性質(zhì)應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)取中點(diǎn)連接,得,可得,可證,可得,進(jìn)而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點(diǎn),連,可得,,可得(或補(bǔ)角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點(diǎn)連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點(diǎn),則,(或補(bǔ)角)是異面直線與所成的角.設(shè)為邊的中點(diǎn),則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點(diǎn)作交于點(diǎn)由(1)易知兩兩垂直,以為原點(diǎn),射線分別為軸,軸,軸的正半軸,建立空間直角坐標(biāo)系.不妨設(shè),由,易知點(diǎn)的坐標(biāo)分別為則顯然向量是平面的法向量已知二面角為,設(shè),則設(shè)平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點(diǎn)睛】本題考查空間點(diǎn)、線、面位置關(guān)系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對(duì)應(yīng)的平面角是解題的關(guān)鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數(shù)學(xué)計(jì)算能力,屬于中檔題.18、(1)證明見解析;(2)最小值為1【解析】

(1)利用基本不等式可得,再根據(jù)0<xy<1時(shí),即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當(dāng)且僅當(dāng)x=y(tǒng)=z時(shí)取等號(hào).又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當(dāng)且僅當(dāng)x=y(tǒng)=z=1時(shí)取等號(hào),∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點(diǎn)睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬中檔題.19、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點(diǎn),點(diǎn)到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標(biāo)方程為,∴曲線的普通方程為,即.(2)設(shè)為曲線上一點(diǎn),則點(diǎn)到曲線的圓心的距離.∵,∴當(dāng)時(shí),d有最大值.又∵P,Q分別為曲線,曲線上動(dòng)點(diǎn),∴的最大值為.20、(1);(2)見解析.【解析】

(I)結(jié)合離心率,得到a,b,c的關(guān)系,計(jì)算A的坐標(biāo),計(jì)算切線與橢圓交點(diǎn)坐標(biāo),代入橢圓方程,計(jì)算參數(shù),即可.(II)分切線斜率存在與不存在討論,設(shè)出M,N的坐標(biāo),設(shè)出切線方程,結(jié)合圓心到切線距離公式,得到m,k的關(guān)系式,將直線方程代入橢圓方程,利用根與系數(shù)關(guān)系,表示,結(jié)合三角形相似,證明結(jié)論,即可.【詳解】(Ⅰ)設(shè)橢圓的半焦距為,由橢圓的離心率為知,,∴橢圓的方程可設(shè)為.易求得,∴點(diǎn)在橢圓上,∴,解得,∴橢圓的方程為.(Ⅱ)當(dāng)過點(diǎn)且與圓相切的切線斜率不存在時(shí),不妨設(shè)切線方程為,由(Ⅰ)知,,,∴.當(dāng)過點(diǎn)且與圓相切的切線斜率存在時(shí),可設(shè)切線的方程為,,∴,即.聯(lián)立直線和橢圓的方程得,∴,得.∵,∴,,∴.綜上所述,圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),都有.在中,由與相似得,為定值.【點(diǎn)睛】本道題考查了橢圓方程的求解,考查了直線與橢圓位置關(guān)系,考查了向量的坐標(biāo)運(yùn)算,難度偏難.21、(1)證明見解析(2)【解析】

(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因?yàn)槠矫?,所以平面平?易知,且為的中點(diǎn),所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設(shè)的中點(diǎn)為,以為原點(diǎn),以,,所在直線分別為,,軸,建立空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的法向量為,由得取.設(shè)直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面垂直的證明,直線與平面所成的角,要求一定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論