云南省安寧市實驗石江學校2023-2024學年高三適應性調研考試數(shù)學試題含解析_第1頁
云南省安寧市實驗石江學校2023-2024學年高三適應性調研考試數(shù)學試題含解析_第2頁
云南省安寧市實驗石江學校2023-2024學年高三適應性調研考試數(shù)學試題含解析_第3頁
云南省安寧市實驗石江學校2023-2024學年高三適應性調研考試數(shù)學試題含解析_第4頁
云南省安寧市實驗石江學校2023-2024學年高三適應性調研考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省安寧市實驗石江學校2023-2024學年高三適應性調研考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正項等比數(shù)列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.2.已知函數(shù),滿足對任意的實數(shù),都有成立,則實數(shù)的取值范圍為()A. B. C. D.3.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm34.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.65.集合,則集合的真子集的個數(shù)是A.1個 B.3個 C.4個 D.7個6.已知復數(shù),則的虛部是()A. B. C. D.17.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.8.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.199.若集合,,則下列結論正確的是()A. B. C. D.10.“一帶一路”是“絲綢之路經濟帶”和“21世紀海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經濟合作關系,共同打造政治互信、經濟融合、文化包容的命運共同體.自2015年以來,“一帶一路”建設成果顯著.如圖是2015—2019年,我國對“一帶一路”沿線國家進出口情況統(tǒng)計圖,下列描述錯誤的是()A.這五年,出口總額之和比進口總額之和大B.這五年,2015年出口額最少C.這五年,2019年進口增速最快D.這五年,出口增速前四年逐年下降11.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.112.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.14.集合,,若是平面上正八邊形的頂點所構成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;15.圓關于直線的對稱圓的方程為_____.16.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數(shù)為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知x,y,z均為正數(shù).(1)若xy<1,證明:|x+z|?|y+z|>4xyz;(2)若=,求2xy?2yz?2xz的最小值.18.(12分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設直線l與曲線C相交于A,B兩點,且,求r的值.19.(12分)已知橢圓,上、下頂點分別是、,上、下焦點分別是、,焦距為,點在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點,過作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.20.(12分)已知函數(shù).(1)若在處導數(shù)相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數(shù)的取值范圍.21.(12分)已知,且的解集為.(1)求實數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數(shù)取值范圍.22.(10分)已知函數(shù).(1)設,若存在兩個極值點,,且,求證:;(2)設,在不單調,且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設等比數(shù)列的公比為q,,運用等比數(shù)列的性質和通項公式,以及等差數(shù)列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數(shù)列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數(shù)列的中項性質和等比數(shù)列的通項公式的應用,其中解答中熟記等比數(shù)列通項公式,合理利用等比數(shù)列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.2、B【解析】

由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實數(shù)的取值范圍是.故選:B.【點睛】本題考查利用分段函數(shù)的單調性求參數(shù),一般要分析每支函數(shù)的單調性,同時還要考慮分段點處函數(shù)值的大小關系,考查運算求解能力,屬于中等題.3、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.4、C【解析】

根據(jù)列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎題.5、B【解析】

由題意,結合集合,求得集合,得到集合中元素的個數(shù),即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數(shù)為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數(shù)個數(shù)的求解,其中作出集合的運算,得到集合,再由真子集個數(shù)的公式作出計算是解答的關鍵,著重考查了推理與運算能力.6、C【解析】

化簡復數(shù),分子分母同時乘以,進而求得復數(shù),再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復數(shù)的乘法、除法運算,考查共軛復數(shù)的虛部,屬于基礎題.7、D【解析】

以BC的中點為坐標原點,建立直角坐標系,可得,設,運用向量的坐標表示,求得點A的軌跡,進而得到關于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設,由,可得,即,則,當時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標表示,考查轉化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.8、B【解析】

計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關計算,意在考查學生的計算能力和對于數(shù)列公式方法的綜合應用.9、D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數(shù)學運算能力,屬于基礎題.10、D【解析】

根據(jù)統(tǒng)計圖中數(shù)據(jù)的含義進行判斷即可.【詳解】對A項,由統(tǒng)計圖可得,2015年出口額和進口額基本相等,而2016年到2019年出口額都大于進口額,則A正確;對B項,由統(tǒng)計圖可得,2015年出口額最少,則B正確;對C項,由統(tǒng)計圖可得,2019年進口增速都超過其余年份,則C正確;對D項,由統(tǒng)計圖可得,2015年到2016年出口增速是上升的,則D錯誤;故選:D【點睛】本題主要考查了根據(jù)條形統(tǒng)計圖和折線統(tǒng)計圖解決實際問題,屬于基礎題.11、C【解析】

根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.12、B【解析】

設正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內,使得每條棱恰好為正方體的面對角線,根據(jù)正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內,設正方體的棱長為a,如圖所示,設正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標,進一步得到D橫坐標,再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關于x軸對稱,所以圓心E在x軸上,設圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標為,又B、D中點是E,所以D的橫坐標為,故.故答案為:.【點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學生基本計算能力及轉化與化歸思想,本題關鍵是求出B、D橫坐標,是一道有區(qū)分度的壓軸填空題.14、②③【解析】

根據(jù)對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據(jù)對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.【點睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學生的計算能力和轉化能力,利用對稱性是解題的關鍵.15、【解析】

求出圓心關于直線的對稱點,即可得解.【詳解】的圓心為,關于對稱點設為,則有:,解得,所以對稱后的圓心為,故所求圓的方程為.故答案為:【點睛】此題考查求圓關于直線的對稱圓方程,關鍵在于準確求出圓心關于直線的對稱點坐標.16、【解析】

分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數(shù)為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)最小值為1【解析】

(1)利用基本不等式可得,再根據(jù)0<xy<1時,即可證明|x+z|?|y+z|>4xyz.(2)由=,得,然后利用基本不等式即可得到xy+yz+xz≥3,從而求出2xy?2yz?2xz的最小值.【詳解】(1)證明:∵x,y,z均為正數(shù),∴|x+z|?|y+z|=(x+z)(y+z)≥=,當且僅當x=y(tǒng)=z時取等號.又∵0<xy<1,∴,∴|x+z|?|y+z|>4xyz;(2)∵=,即.∵,,,當且僅當x=y(tǒng)=z=1時取等號,∴,∴xy+yz+xz≥3,∴2xy?2yz?2xz=2xy+yz+xz≥1,∴2xy?2yz?2xz的最小值為1.【點睛】本題考查了利用綜合法證明不等式和利用基本不等式求最值,考查了轉化思想和運算能力,屬中檔題.18、【解析】

先將曲線C和直線l的極坐標方程化為直角坐標方程,可得圓心到直線的距離,再由勾股定理,計算即得.【詳解】以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,可得曲線C:()的直角坐標方程為,表示以原點為圓心,半徑為r的圓.由直線l的方程,化簡得,則直線l的直角坐標方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點睛】本題考查曲線和直線的極坐標方程化為直角坐標方程,是基礎題.19、(1);(2),理由見解析.【解析】

(1)求出橢圓的上、下焦點坐標,利用橢圓的定義求得的值,進而可求得的值,由此可得出橢圓的方程;(2)設點的坐標為,求出直線的方程,求出點的坐標,由此計算出直線和的斜率,可計算出的值,進而可求得的值,即可得出結論.【詳解】(1)由題意可知,橢圓的上焦點為、,由橢圓的定義可得,可得,,因此,所求橢圓的方程為;(2)設點的坐標為,則,得,直線的斜率為,所以,直線的方程為,聯(lián)立,解得,即點,直線的斜率為,直線的斜率為,所以,,,因此,.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中定值問題的求解,考查計算能力,屬于中等題.20、(I)見解析(II)【解析】

(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導數(shù)相等,得到,得,由韋達定理得,由基本不等式得,得,由題意得,令,則,令,,利用導數(shù)性質能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論