




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市西城區(qū)回民學(xué)校2024年高三最后一模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣23.已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.4.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的的值為()A. B. C. D.5.已知集合A={0,1},B={0,1,2},則滿(mǎn)足A∪C=B的集合C的個(gè)數(shù)為()A.4 B.3 C.2 D.16.已知,則()A. B. C. D.7.已知等差數(shù)列的前13項(xiàng)和為52,則()A.256 B.-256 C.32 D.-328.高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱(chēng)號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過(guò)的最大整數(shù),則稱(chēng)為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.9.甲、乙、丙三人相約晚上在某地會(huì)面,已知這三人都不會(huì)違約且無(wú)兩人同時(shí)到達(dá),則甲第一個(gè)到、丙第三個(gè)到的概率是()A. B. C. D.10.雙曲線(xiàn)的左右焦點(diǎn)為,一條漸近線(xiàn)方程為,過(guò)點(diǎn)且與垂直的直線(xiàn)分別交雙曲線(xiàn)的左支及右支于,滿(mǎn)足,則該雙曲線(xiàn)的離心率為()A. B.3 C. D.211.一個(gè)空間幾何體的正視圖是長(zhǎng)為4,寬為的長(zhǎng)方形,側(cè)視圖是邊長(zhǎng)為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.12.已知是雙曲線(xiàn)的左右焦點(diǎn),過(guò)的直線(xiàn)與雙曲線(xiàn)的兩支分別交于兩點(diǎn)(A在右支,B在左支)若為等邊三角形,則雙曲線(xiàn)的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在梯形中,∥,分別是的中點(diǎn),若,則的值為_(kāi)__________.14.已知,橢圓的方程為,雙曲線(xiàn)方程為,與的離心率之積為,則的漸近線(xiàn)方程為_(kāi)_______.15.曲線(xiàn)在處的切線(xiàn)的斜率為_(kāi)_______.16.在數(shù)列中,已知,則數(shù)列的的前項(xiàng)和為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在數(shù)列中,,(1)求數(shù)列的通項(xiàng)公式;(2)若存在,使得成立,求實(shí)數(shù)的最小值18.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.19.(12分)在創(chuàng)建“全國(guó)文明衛(wèi)生城”過(guò)程中,運(yùn)城市“創(chuàng)城辦”為了調(diào)查市民對(duì)創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識(shí)問(wèn)卷調(diào)查(一位市民只能參加一次),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的人的得分統(tǒng)計(jì)結(jié)果如表所示:.組別頻數(shù)(1)由頻數(shù)分布表可以大致認(rèn)為,此次問(wèn)卷調(diào)查的得分似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求;(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:①得分不低于的可以獲贈(zèng)次隨機(jī)話(huà)費(fèi),得分低于的可以獲贈(zèng)次隨機(jī)話(huà)費(fèi);②每次獲贈(zèng)的隨機(jī)話(huà)費(fèi)和對(duì)應(yīng)的概率為:贈(zèng)送話(huà)費(fèi)的金額(單位:元)概率現(xiàn)有市民甲參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話(huà)費(fèi),求的分布列與數(shù)學(xué)期望.附:參考數(shù)據(jù)與公式:,若,則,,20.(12分)2019年底,北京2022年冬奧組委會(huì)啟動(dòng)志愿者全球招募,僅一個(gè)月內(nèi)報(bào)名人數(shù)便突破60萬(wàn),其中青年學(xué)生約有50萬(wàn)人.現(xiàn)從這50萬(wàn)青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語(yǔ)水平測(cè)試,所得成績(jī)(單位:分)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:(Ⅰ)試估計(jì)在這50萬(wàn)青年學(xué)生志愿者中,英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的女生人數(shù);(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測(cè)試成績(jī)?cè)?0分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個(gè)人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)21.(12分)在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.(1)求直線(xiàn)和圓的普通方程;(2)已知直線(xiàn)上一點(diǎn),若直線(xiàn)與圓交于不同兩點(diǎn),求的取值范圍.22.(10分)已知,均為給定的大于1的自然數(shù),設(shè)集合,.(Ⅰ)當(dāng),時(shí),用列舉法表示集合;(Ⅱ)當(dāng)時(shí),,且集合滿(mǎn)足下列條件:①對(duì)任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補(bǔ)集);(ⅱ)為一個(gè)定值(不必求出此定值);(Ⅲ)設(shè),,,其中,,若,則.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
分別比較復(fù)數(shù)的實(shí)部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限.【詳解】因?yàn)闀r(shí),所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.2、D【解析】
化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、C【解析】試題分析:通過(guò)對(duì)以下四個(gè)四棱錐的三視圖對(duì)照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖4、C【解析】
根據(jù)給定的程序框圖,計(jì)算前幾次的運(yùn)算規(guī)律,得出運(yùn)算的周期性,確定跳出循環(huán)時(shí)的n的值,進(jìn)而求解的值,得到答案.【詳解】由題意,,第1次循環(huán),,滿(mǎn)足判斷條件;第2次循環(huán),,滿(mǎn)足判斷條件;第3次循環(huán),,滿(mǎn)足判斷條件;可得的值滿(mǎn)足以3項(xiàng)為周期的計(jì)算規(guī)律,所以當(dāng)時(shí),跳出循環(huán),此時(shí)和時(shí)的值對(duì)應(yīng)的相同,即.故選:C.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出問(wèn)題,其中解答中認(rèn)真審題,得出程序運(yùn)行時(shí)的計(jì)算規(guī)律是解答的關(guān)鍵,著重考查了推理與計(jì)算能力.5、A【解析】
由可確定集合中元素一定有的元素,然后列出滿(mǎn)足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項(xiàng).【點(diǎn)睛】考查集合并集運(yùn)算,屬于簡(jiǎn)單題.6、B【解析】
利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.【詳解】,本題正確選項(xiàng):【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.7、A【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.【詳解】由,,得.選A.【點(diǎn)睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應(yīng)用能快速求得結(jié)果.8、B【解析】
利用換元法化簡(jiǎn)解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因?yàn)椋ǎ?,令(),則(),函數(shù)的對(duì)稱(chēng)軸方程為,所以,,所以,所以的值域?yàn)?故選:B【點(diǎn)睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類(lèi)討論和應(yīng)用意識(shí).9、D【解析】
先判斷是一個(gè)古典概型,列舉出甲、乙、丙三人相約到達(dá)的基本事件種數(shù),再得到甲第一個(gè)到、丙第三個(gè)到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達(dá)的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個(gè)到、丙第三個(gè)到有甲乙丙,共1種,所以甲第一個(gè)到、丙第三個(gè)到的概率是.故選:D【點(diǎn)睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.10、A【解析】
設(shè),直線(xiàn)的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡(jiǎn)到,得到離心率.【詳解】設(shè),直線(xiàn)的方程為.聯(lián)立整理得,則.因?yàn)椋詾榫€(xiàn)段的中點(diǎn),所以,,整理得,故該雙曲線(xiàn)的離心率.故選:.【點(diǎn)睛】本題考查了雙曲線(xiàn)的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.11、B【解析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.【點(diǎn)睛】本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.12、D【解析】
根據(jù)雙曲線(xiàn)的定義可得的邊長(zhǎng)為,然后在中應(yīng)用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點(diǎn)睛】本題考查求雙曲線(xiàn)的離心率,解題關(guān)鍵是應(yīng)用雙曲線(xiàn)的定義把到兩焦點(diǎn)距離用表示,然后用余弦定理建立關(guān)系式.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
建系,設(shè)設(shè),由可得,進(jìn)一步得到的坐標(biāo),再利用數(shù)量積的坐標(biāo)運(yùn)算即可得到答案.【詳解】以A為坐標(biāo)原點(diǎn),AD為x軸建立如圖所示的直角坐標(biāo)系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點(diǎn)睛】本題考查利用坐標(biāo)法求向量的數(shù)量積,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.14、【解析】
求出橢圓與雙曲線(xiàn)的離心率,根據(jù)離心率之積的關(guān)系,然后推出關(guān)系,即可求解雙曲線(xiàn)的漸近線(xiàn)方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線(xiàn)方程為,的離心率:,與的離心率之積為,,,的漸近線(xiàn)方程為:,即.故答案為:【點(diǎn)睛】本題考查了橢圓、雙曲線(xiàn)的幾何性質(zhì),掌握橢圓、雙曲線(xiàn)的離心率公式,屬于基礎(chǔ)題.15、【解析】
求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線(xiàn)斜率.【詳解】,,,即曲線(xiàn)在處的切線(xiàn)的斜率.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運(yùn)算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.16、【解析】
由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別構(gòu)成以2為公比的等比數(shù)列,求其通項(xiàng)公式,得到,再由求解.【詳解】解:由,得,,則數(shù)列的所有奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別構(gòu)成以2為公比的等比數(shù)列.,..故答案為:.【點(diǎn)睛】本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式,訓(xùn)練了數(shù)列的分組求和,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)由得,兩式相減可得是從第二項(xiàng)開(kāi)始的等比數(shù)列,由此即可求出答案;(2),分類(lèi)討論,當(dāng)時(shí),,作商法可得數(shù)列為遞增數(shù)列,由此可得答案,【詳解】解:(1)因?yàn)?,,兩式相減得:,即,是從第二項(xiàng)開(kāi)始的等比數(shù)列,∵∴,則,;(2),當(dāng)時(shí),;當(dāng)時(shí),設(shè)遞增,,所以實(shí)數(shù)的最小值.【點(diǎn)睛】本題主要考查地推數(shù)列的應(yīng)用,屬于中檔題.18、(1)(2)【解析】
(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)?,所以解得(舍)或所以,即?)據(jù)(1)求解知,,所以所以【點(diǎn)睛】本題考查求等比數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.19、(1)(2)詳見(jiàn)解析【解析】
由題意,根據(jù)平均數(shù)公式求得,再根據(jù),參照數(shù)據(jù)求解.由題意得,獲贈(zèng)話(huà)費(fèi)的可能取值為,求得相應(yīng)的概率,列出分布列求期望.【詳解】由題意得綜上,由題意得,獲贈(zèng)話(huà)費(fèi)的可能取值為,,的分布列為:【點(diǎn)睛】本題主要考查正態(tài)分布和離散型隨機(jī)變量的分布列及期望,還考查了運(yùn)算求解的能力,屬于中檔題.20、(Ⅰ)萬(wàn);(Ⅱ)分布列見(jiàn)解析,;(Ⅲ)【解析】
(Ⅰ)根據(jù)比例關(guān)系直接計(jì)算得到答案.(Ⅱ)的可能取值為,計(jì)算概率得到分布列,再計(jì)算數(shù)學(xué)期望得到答案.(Ⅲ)英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的概率為,故,解得答案.【詳解】(Ⅰ)樣本中女生英語(yǔ)成績(jī)?cè)诜忠陨系挠腥?,故人?shù)為:萬(wàn)人.(Ⅱ)8名男生中,測(cè)試成績(jī)?cè)?0分以上的有人,的可能取值為:.,,.故分布列為:.(Ⅲ)英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的概率為,故,故.故的最小值為.【點(diǎn)睛】本題考查了樣本估計(jì)總體,分布列,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21、(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線(xiàn)的普通方程,由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)把直線(xiàn)的參數(shù)方程代入曲線(xiàn)的直角坐標(biāo)方程,其中參數(shù)的絕對(duì)值表示直線(xiàn)上對(duì)應(yīng)點(diǎn)到的距離,因此有,,直接由韋達(dá)定理可得,注意到直線(xiàn)與圓相交,因此判別式>0,這樣可得滿(mǎn)足的不等關(guān)系,由此可求得的取值范圍.詳解:(1)直線(xiàn)的參數(shù)方程為,普通方程為,將代入圓的極坐標(biāo)方程中,可得圓的普通方程為,(2)解:直線(xiàn)的參數(shù)方程為代入圓的方程為可得:(*),且由題意,,.因?yàn)榉匠蹋?)有兩個(gè)不同的實(shí)根,所以,即,又,所以.因?yàn)?,所以所?點(diǎn)睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標(biāo)方程與直角坐標(biāo)方程互化一般利用公式;(3)過(guò)的直線(xiàn)的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線(xiàn)上任一點(diǎn)對(duì)應(yīng)參數(shù),則.22
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋室內(nèi)裝修合同
- 房產(chǎn)中介服務(wù)合同
- 企業(yè)安全管理制度咨詢(xún)服務(wù)合同
- 商場(chǎng)商鋪房屋租賃合同
- 全新供貨水果合同
- 原材料運(yùn)輸供貨合同
- 法律常識(shí)合同法考點(diǎn)解析
- 殯儀服務(wù)合同條款
- 飯店勞務(wù)合同年
- 建筑工程招投標(biāo)與合同管理復(fù)習(xí)
- 專(zhuān)題五 戰(zhàn)爭(zhēng)與文化交鋒 高考?xì)v史二輪復(fù)習(xí)專(zhuān)項(xiàng)提分訓(xùn)練(含答案)
- 人教版二年級(jí)數(shù)學(xué)下冊(cè)第三單元 圖形的運(yùn)動(dòng)(一)標(biāo)準(zhǔn)檢測(cè)卷(含答案)
- 2025年山東省淄博市張店區(qū)中考一模歷史試題(含答案)
- 2025年內(nèi)蒙古中考一模英語(yǔ)試題(原卷版+解析版)
- 【湛江】2025年中國(guó)熱帶農(nóng)業(yè)科學(xué)院農(nóng)產(chǎn)品加工研究所第一批招聘工作人員30人(第1號(hào))筆試歷年典型考題及考點(diǎn)剖析附帶答案詳解
- 銀行案件防控課件
- 吉林省長(zhǎng)春市2025屆高三下學(xué)期質(zhì)量監(jiān)測(cè)(二)數(shù)學(xué)試題
- 2025年河南省商丘市柘城縣中考一?;瘜W(xué)試題(原卷版+解析版)
- 磁鐵怎樣吸引物體(課件)-二年級(jí)科學(xué)下冊(cè)教科版
- 2025年中考語(yǔ)文復(fù)習(xí)知識(shí)清單:八年級(jí)下冊(cè)古詩(shī)詞梳理(原卷版+解析)
- 與食品安全相關(guān)的組織機(jī)構(gòu)設(shè)置,部門(mén)及崗位職責(zé)
評(píng)論
0/150
提交評(píng)論