版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年吉林省吉林市蛟河市第一中學高三下學期第五次調研考試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.2.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-283.已知為虛數單位,若復數,,則A. B.C. D.4.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.5.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.56.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數的值為()A.1 B.2 C.-1 D.-27.下圖是民航部門統計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數據統計圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價格最高B.天津的往返機票平均價格變化最大C.上海和廣州的往返機票平均價格基本相當D.相比于上一年同期,其中四個城市的往返機票平均價格在增加8.已知等式成立,則()A.0 B.5 C.7 D.139.我國著名數學家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內容是“每個大于的偶數可以表示為兩個素數的和”(注:如果一個大于的整數除了和自身外無其他正因數,則稱這個整數為素數),在不超過的素數中,隨機選取個不同的素數、,則的概率是()A. B. C. D.10.若,則“”的一個充分不必要條件是A. B.C.且 D.或11.如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內一點,則三棱錐的正視圖與側視圖的面積之和為()A.2 B.3 C.4 D.512.第七屆世界軍人運動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運動場地提供服務,要求每個人都要被派出去提供服務,且每個場地都要有志愿者服務,則甲和乙恰好在同一組的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列為正項等比數列,,則的最小值為________.14.點在雙曲線的右支上,其左、右焦點分別為、,直線與以坐標原點為圓心、為半徑的圓相切于點,線段的垂直平分線恰好過點,則該雙曲線的漸近線的斜率為__________.15.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.16.已知函數,曲線與直線相交,若存在相鄰兩個交點間的距離為,則可取到的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數,將曲線經過伸縮變換后得到曲線.在以原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標方程;(2)已知點是曲線上的任意一點,又直線上有兩點和,且,又點的極角為,點的極角為銳角.求:①點的極角;②面積的取值范圍.18.(12分)如圖,在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點且,,,.求證:平面平面以;求二面角的大小.19.(12分)如圖,在斜三棱柱中,側面與側面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.20.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數k的值.21.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內報名人數便突破60萬,其中青年學生約有50萬人.現從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統計結果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數;(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數為X,求的分布列和數學期望;(Ⅲ)為便于聯絡,現將所有的青年學生志愿者隨機分成若干組(每組人數不少于5000),并在每組中隨機選取個人作為聯絡員,要求每組的聯絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據圖表中數據,以頻率作為概率,給出的最小值.(結論不要求證明)22.(10分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.2、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.3、B【解析】
由可得,所以,故選B.4、C【解析】
由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復幾何體是解題的關鍵.5、A【解析】
由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.6、D【解析】
由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質應用,幾何性質的轉化是求解的捷徑.7、D【解析】
根據條形圖可折線圖所包含的數據對選項逐一分析,由此得出敘述不正確的選項.【詳解】對于A選項,根據折線圖可知深圳的變化幅度最小,根據條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根據折線圖可知天津的往返機票平均價格變化最大,所以B選項敘述正確.對于C選項,根據條形圖可知上海和廣州的往返機票平均價格基本相當,所以C選項敘述正確.對于D選項,根據折線圖可知相比于上一年同期,除了深圳外,另外五個城市的往返機票平均價格在增加,故D選項敘述錯誤.故選:D【點睛】本小題主要考查根據條形圖和折線圖進行數據分析,屬于基礎題.8、D【解析】
根據等式和特征和所求代數式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數學運算能力.9、B【解析】
先列舉出不超過的素數,并列舉出所有的基本事件以及事件“在不超過的素數中,隨機選取個不同的素數、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數有:、、、、、,在不超過的素數中,隨機選取個不同的素數,所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數中,隨機選取個不同的素數、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.10、C【解析】,∴,當且僅當時取等號.故“且”是“”的充分不必要條件.選C.11、A【解析】
根據幾何體分析正視圖和側視圖的形狀,結合題干中的數據可計算出結果.【詳解】由三視圖的性質和定義知,三棱錐的正視圖與側視圖都是底邊長為高為的三角形,其面積都是,正視圖與側視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側視圖的面積和,解答的關鍵就是分析出正視圖和側視圖的形狀,考查空間想象能力與計算能力,屬于基礎題.12、A【解析】
根據題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數,再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地無關,故甲和乙恰好在同一組的概率是.故選:A.【點睛】本題考查組合的應用和概率的計算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、27【解析】
利用等比數列的性質求得,結合其下標和性質和均值不等式即可容易求得.【詳解】由等比數列的性質可知,則,.當且僅當時取得最小值.故答案為:.【點睛】本題考查等比數列的下標和性質,涉及均值不等式求和的最小值,屬綜合基礎題.14、【解析】如圖,是切點,是的中點,因為,所以,又,所以,,又,根據雙曲線的定義,有,即,兩邊平方并化簡得,所以,因此.15、【解析】
求解占圓柱形容器的的總容積的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.16、4【解析】
由于曲線與直線相交,存在相鄰兩個交點間的距離為,所以函數的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點睛】此題考查正弦函數的圖像和性質的應用及三角方程的求解,熟練應用三角函數的圖像和性質是解題的關鍵,考查了推理能力和計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)曲線為圓心在原點,半徑為2的圓.的極坐標方程為(2)①②【解析】
(1)求得曲線伸縮變換后所得的參數方程,消參后求得的普通方程,判斷出對應的曲線,并將的普通方程轉化為極坐標方程.(2)①將的極角代入直線的極坐標方程,由此求得點的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進而求得,從而求得點的極角.②解法一:利用曲線的參數方程,求得曲線上的點到直線的距離的表達式,結合三角函數的知識求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據曲線表示的曲線,利用圓的幾何性質求得圓上的點到直線的距離的最大值和最小值,進而求得面積的取值范圍.【詳解】(1)因為曲線的參數方程為(為參數),因為則曲線的參數方程所以的普通方程為.所以曲線為圓心在原點,半徑為2的圓.所以的極坐標方程為,即.(2)①點的極角為,代入直線的極坐標方程得點極徑為,且,所以為等腰三角形,又直線的普通方程為,又點的極角為銳角,所以,所以,所以點的極角為.②解法1:直線的普通方程為.曲線上的點到直線的距離.當,即()時,取到最小值為.當,即()時,取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因為圓的半徑為2,且圓心到直線的距離,因為,所以圓與直線相離.所以圓上的點到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點睛】本小題考查坐標變換,極徑與極角;直線,圓的極坐標方程,圓的參數方程,直線的極坐標方程與普通方程,點到直線的距離等.考查數學運算能力,包括運算原理的理解與應用、運算方法的選擇與優(yōu)化、運算結果的檢驗與改進等.也兼考了數學抽象素養(yǎng)、邏輯推理、數學運算、直觀想象等核心素養(yǎng).18、證明見解析;.【解析】
推導出,,從而平面,由此證明平面平面以;以為原點,建立空間直角坐標系,利用法向量求出二面角的大小.【詳解】解:,,為的中點,四邊形為平行四邊形,.,,即.又平面平面,且平面平面,平面.平面,平面平面.,為的中點,.平面平面,且平面平面,平面.如圖,以為原點建立空間直角坐標系,則平面的一個法向量為,,,,,設,則,,,,,在平面中,,,設平面的法向量為,則,即,平面的一個法向量為,,由圖知二面角為銳角,所以所求二面角大小為.【點睛】本題考查面面垂直的證明,考查二面角的大小的求法,考查了空間向量的應用,屬于中檔題.19、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(1)取中點,連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點,連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標系,則,,,設平面的法向量為,因為,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.20、(1);(2)或.【解析】
(1)聯立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據根的判別式,即可求出結論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學生處工作計劃
- 幼兒園保教工作計劃大全
- 買賣合同范文七篇
- 幼兒教育工作計劃集合七篇
- 中國卡座連接器項目投資可行性研究報告
- 棉花姑娘教案四篇
- 網絡對戰(zhàn)小游戲課程設計
- 產科護士一天的工作計劃
- 全新大一軍訓心得筆記10篇
- 畢業(yè)生自我介紹(15篇)
- 2024年河南省中職對口升學高考語文試題真題(解析版)
- 配合、協調、服務方案
- 《食品行業(yè)ERP應用》課件
- 市政工程監(jiān)理大綱
- 2023-2024學年廣東省廣州市黃埔區(qū)六年級(上)期末數學試卷(A卷)
- 41-降低懸挑式卸料平臺安全隱患發(fā)生率 棗莊華廈(4:3定稿)
- 初中數學新課程標準(2024年版)
- 2024年北京市學業(yè)水平合格性地理試卷(第一次)
- 黑龍江哈爾濱六中2025屆高三第六次模擬考試數學試卷含解析
- 期末測試卷(一)2024-2025學年 人教版PEP英語五年級上冊(含答案含聽力原文無聽力音頻)
- 2023-2024學年廣東省深圳市南山區(qū)八年級(上)期末英語試卷
評論
0/150
提交評論