吉林省白城市第十四中學2024屆高考沖刺模擬數(shù)學試題含解析_第1頁
吉林省白城市第十四中學2024屆高考沖刺模擬數(shù)學試題含解析_第2頁
吉林省白城市第十四中學2024屆高考沖刺模擬數(shù)學試題含解析_第3頁
吉林省白城市第十四中學2024屆高考沖刺模擬數(shù)學試題含解析_第4頁
吉林省白城市第十四中學2024屆高考沖刺模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省白城市第十四中學2024屆高考沖刺模擬數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)()的圖像可以是()A. B.C. D.2.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.3.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.4.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于5.設函數(shù)是奇函數(shù)的導函數(shù),當時,,則使得成立的的取值范圍是()A. B.C. D.6.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.7.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.28.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm39.設復數(shù)滿足(為虛數(shù)單位),則復數(shù)的共軛復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.函數(shù)的圖象大致為()A. B.C. D.11.明代數(shù)學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統(tǒng)宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執(zhí)行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.12.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個面中,最大面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,,兩兩垂直且,點為的外接球上任意一點,則的最大值為______.14.能說明“在數(shù)列中,若對于任意的,,則為遞增數(shù)列”為假命題的一個等差數(shù)列是______.(寫出數(shù)列的通項公式)15.若變量,滿足約束條件,則的最大值為__________.16.已知二項式ax-1x6的展開式中的常數(shù)項為-160三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某精密儀器生產車間每天生產個零件,質檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據(jù)多年的生產數(shù)據(jù)和經驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.(1)假設某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機變量服從正態(tài)分布,則.18.(12分)已知函數(shù).(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數(shù)的定義域和值域.19.(12分)已知數(shù)列的通項,數(shù)列為等比數(shù)列,且,,成等差數(shù)列.(1)求數(shù)列的通項;(2)設,求數(shù)列的前項和.20.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.21.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.22.(10分)對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調查機構借助網(wǎng)絡進行了問卷調查,并從參與調查的網(wǎng)友中隨機抽取了100人進行抽樣分析,得到如下列聯(lián)表(單位:人)經常使用信用卡偶爾或不用信用卡合計40歲及以下15355040歲以上203050合計3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調查的40歲以上的網(wǎng)民中隨機抽取3人贈送禮品,記其中經常使用信用卡的人數(shù)為,求隨機變量的分布列、數(shù)學期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.635

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù),可排除,然后采用導數(shù),判斷原函數(shù)的單調性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數(shù)在單調遞減在單調遞增,故選:B【點睛】本題考查函數(shù)的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調性;(5)值域,屬基礎題.2、A【解析】

根據(jù)是中點這一條件,將棱錐的高轉化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.3、A【解析】

求導得到,根據(jù)切線方程得到,故,設,求導得到函數(shù)在上單調遞減,在上單調遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設,,取,解得.故函數(shù)在上單調遞減,在上單調遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導數(shù)求最值,意在考查學生的計算能力和綜合應用能力.4、D【解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關系,平面的基本性質及其推論.5、D【解析】構造函數(shù),令,則,由可得,則是區(qū)間上的單調遞減函數(shù),且,當x∈(0,1)時,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當x∈(1,+∞)時,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當x∈(-1,0)時,f(x)>0,(x2-1)f(x)<0∴當x∈(-∞,-1)時,f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項.點睛:函數(shù)的單調性是函數(shù)的重要性質之一,它的應用貫穿于整個高中數(shù)學的教學之中.某些數(shù)學問題從表面上看似乎與函數(shù)的單調性無關,但如果我們能挖掘其內在聯(lián)系,抓住其本質,那么運用函數(shù)的單調性解題,能起到化難為易、化繁為簡的作用.因此對函數(shù)的單調性進行全面、準確的認識,并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點,構造一個適當?shù)暮瘮?shù),利用它的單調性進行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.6、C【解析】

過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.7、D【解析】

分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.8、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.9、D【解析】

先把變形為,然后利用復數(shù)代數(shù)形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.10、A【解析】

根據(jù)函數(shù)的奇偶性和單調性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數(shù)圖像的識別,考查利用導數(shù)研究函數(shù)的單調區(qū)間和極值,屬于中檔題.11、C【解析】

根據(jù)程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環(huán),輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.12、B【解析】

由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結合三視圖求出每個面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因為,,所以,所以,因為為等邊三角形,所以,所以該三棱錐的四個面中,最大面積為.故選:B【點睛】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運算求解能力;三視圖正確還原幾何體是求解本題的關鍵;屬于中檔題、??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據(jù)三棱錐的幾何性質,求出外接球的半徑,結合向量的運算,將問題轉化為求球體表面一點到外心距離最大的問題,即可求得結果.【詳解】因為兩兩垂直且,故三棱錐的外接球就是對應棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設線段的中點為,故可得,故當取得最大值時,取得最大值.而當在同一個大圓上,且,點與線段在球心的異側時,取得最大值,如圖所示:此時,故答案為:.【點睛】本題考查球體的幾何性質,幾何體的外接球問題,涉及向量的線性運算以及數(shù)量積運算,屬綜合性困難題.14、答案不唯一,如【解析】

根據(jù)等差數(shù)列的性質可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設,則,很明顯為遞減數(shù)列,說明原命題是假命題.所以,答案不唯一,符合條件即可.【點睛】本題考查對等差數(shù)列的概念和性質的理解,關鍵是假設出一個遞減的數(shù)列,還需檢驗是否滿足命題中的條件,屬基礎題.15、【解析】

根據(jù)約束條件可以畫出可行域,從而將問題轉化為直線在軸截距最大的問題的求解,通過數(shù)形結合的方式可確定過時,取最大值,代入可求得結果.【詳解】由約束條件可得可行域如下圖陰影部分所示:將化為,則最大時,直線在軸截距最大;由直線平移可知,當過時,在軸截距最大,由得:,.故答案為:.【點睛】本題考查線性規(guī)劃中最值問題的求解,關鍵是能夠將問題轉化為直線在軸截距的最值的求解問題,通過數(shù)形結合的方式可求得結果.16、2【解析】

在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項,再根據(jù)常數(shù)項等于-160求得實數(shù)a的值.【詳解】∵二項式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項為-C63故答案為:2.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)需要,見解析【解析】

(1)由零件的長度服從正態(tài)分布且相互獨立,零件的長度滿足即為合格,則每一個零件的長度合格的概率為,滿足二項分布,利用補集的思想求得,再根據(jù)公式求得;(2)由題可得不合格率為,檢查的成本為,求出不檢查時損失的期望,與成本作差,再與0比較大小即可判斷.【詳解】(1),由于滿足二項分布,故.(2)由題意可知不合格率為,若不檢查,損失的期望為;若檢查,成本為,由于,當充分大時,,所以為了使損失盡量小,小張需要檢查其余所有零件.【點睛】本題考查正態(tài)分布的應用,考查二項分布的期望,考查補集思想的應用,考查分析能力與數(shù)據(jù)處理能力.18、(Ⅰ)(Ⅱ)函數(shù)的定義域為,值域為【解析】

(1)由為第二象限角及的值,利用同角三角函數(shù)間的基本關系求出及的值,再代入中即可得到結果.(2)函數(shù)解析式利用二倍角和輔助角公式將化為一個角的正弦函數(shù),根據(jù)的范圍,即可得到函數(shù)值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數(shù)的定義域為.化簡,得,因為,且,,所以,所以.所以函數(shù)的值域為.(注:或許有人會認為“因為,所以”,其實不然,因為.)【點睛】本題考查同角三角函數(shù)的基本關系式,三角函數(shù)函數(shù)值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數(shù)關系式的問題,意在考查學生的轉化能力和計算求解能力,屬于常考題型.19、(1);(2).【解析】

(1)根據(jù),,成等差數(shù)列以及為等比數(shù)列,通過直接對進行賦值計算出的首項和公比,即可求解出的通項公式;(2)的通項公式符合等差乘以等比的形式,采用錯位相減法進行求和.【詳解】(1)數(shù)列為等比數(shù)列,且,,成等差數(shù)列.設數(shù)列的公比為,,,解得(2),,,,.【點睛】本題考查等差、等比數(shù)列的綜合以及錯位相減法求和的應用,難度一般.判斷是否適合使用錯位相減法,可根據(jù)數(shù)列的通項公式是否符合等差乘以等比的形式來判斷.20、(1)證明見解析;(2).【解析】

(1)把轉化成,令,由題意得,即證明恒成立,通過導數(shù)求證即可(2)直接求導可得,,令,得或,故根據(jù)0與的大小關系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當時,.所以,即,所以.所以當時,.解:(2)因為,所以.討論:①當時,,此時函數(shù)在區(qū)間上單調遞減.又,故此時函數(shù)僅有一個零點為0;②當時,令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當時,有.又,此時,故當時,函數(shù)還有一個零點,不符合題意;③當時,令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當且時,,故此時函數(shù)還有一個零點,不符合題意.綜上,所求實數(shù)的值為.【點睛】本題考查不等式的恒成立問題和函數(shù)的零點問題,本題的難點在于把導數(shù)化成因式分解的形式,如,進而分類討論,本題屬于難題21、(1);(2).【解析】

(1)對求導,對參數(shù)進行分類討論,根據(jù)函數(shù)單調性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉化不等式得,令,化簡得,因此,,最后根據(jù)導數(shù)研究對應函數(shù)單調性,確定對應函數(shù)最值,即得取值集合.【詳解】(1),當時,對恒成立,與題意不符,當,,∴時,即函數(shù)在單調遞增,在單調遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論