版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省鞍山市海城牛莊高級職業(yè)中學高一數(shù)學理知識點試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.下列函數(shù)中周期為1的奇函數(shù)是(
)(A)
(B)
(C)
(D)參考答案:D略2.已知直線不經過第一象限,則k的取值范圍為(
)A. B. C. D.參考答案:D【分析】由題意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范圍.【詳解】直線y=(3﹣2k)x﹣6不經過第一象限,可得3﹣2k=0或3﹣2k<0,解得k,則k的取值范圍是[,+∞).故選:D.【點睛】本題考查直線方程的運用,注意運用直線的斜率為0的情況,考查運算能力,屬于基礎題.3.若的值為(
)A.2
B.3
C.4
D.6
參考答案:D略4.如果一個水平放置的圖形的斜二測直觀圖是一個底角為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是()參考答案:A5.按如圖1所示的程序框圖,在運行后輸出的結果為(
)
A.36
B.45
C.55
D.56參考答案:C6.已知,且是第二象限角,那么等于(
)
A.-
B.-
C.
D.參考答案:A略7.如圖,函數(shù)f(x)的圖象為折線ACB,則不等式f(x)≥log2(x+1)的解集是()A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2}參考答案:C【考點】指、對數(shù)不等式的解法.【分析】在已知坐標系內作出y=log2(x+1)的圖象,利用數(shù)形結合得到不等式的解集.【解答】解:由已知f(x)的圖象,在此坐標系內作出y=log2(x+1)的圖象,如圖滿足不等式f(x)≥log2(x+1)的x范圍是﹣1<x≤1;所以不等式f(x)≥log2(x+1)的解集是{x|﹣1<x≤1};故選C.8.已知f(x)=3x+3﹣x,若f(a)=3,則f(2a)等于()A.3 B.5 C.7 D.9參考答案:C【考點】函數(shù)的值.【分析】根據(jù)指數(shù)冪的運算性質,進行平方即可得到結論.【解答】解:∵f(x)=3x+3﹣x,∴f(a)=3a+3﹣a=3,平方得32a+2+3﹣2a=9,即32a+3﹣2a=7.即f(2a)=32a+3﹣2a=7.故選:C.9.函數(shù)y=的定義域是()A. B.C. D.參考答案:D【考點】33:函數(shù)的定義域及其求法.【分析】直接求無理式的范圍,解三角不等式即可.【解答】解:由2cosx+1≥0得,∴,k∈Z.故選D.【點評】本題考查函數(shù)的定義域,三角不等式(利用三角函數(shù)的性質)的解法,是基礎題.10.若函數(shù)的圖像與軸有兩個交點,則實數(shù)的取值范圍是(
)
A.
B.
C.
D.參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.化簡得參考答案:略12.設{an}是公比為q的等比數(shù)列,Sn是它的前n項和.若{Sn}是等差數(shù)列,則
q=
參考答案:113.已知定義在R上的奇函數(shù)f(x),當時有,則
參考答案:因為,又是上的奇函數(shù),所以,即,故填.
14.在△ABC中,角的對邊分別為,若,,,則
.參考答案:15.已知函數(shù)f(x)=,則f(x)的單調遞增區(qū)間是________.參考答案:(-∞,-2)16.如果函數(shù)f(x)對其定義域內的任意兩個實數(shù)x1,x2都滿足不等式f()<,則稱函數(shù)f(x)在定義域上具有性質M,給出下列函數(shù):①y=;②y=x2;③y=2x;④y=log2x.其中具有性質M的是
(填上所有正確答案的序號)參考答案:②③【考點】函數(shù)的值.【專題】函數(shù)的性質及應用.【分析】由不等式f()<,可知:函數(shù)為下凸函數(shù),畫出圖象即可判斷出.【解答】解:函數(shù)f(x)對其定義域內的任意兩個實數(shù)x1,x2都滿足不等式f()<,則稱函數(shù)f(x)在定義域上具有性質M,(為下凸函數(shù)).由函數(shù)的圖象可知:②y=x2;③y=2x.其中具有性質M.故答案為:②③.【點評】本題考查了下凸函數(shù)的性質,考查了數(shù)形結合思想方法與推理能力,屬于中檔題.17.曲線在點處的切線方程是________。參考答案:因為,所以,所以點處的切線方程是,即.
三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.(1)計算.(2)解方程:.參考答案:(1)原式(2)設,則
19.已知圓C:,直線。(1)當為何值時,直線與圓C相切;(2)當直線與圓C相交于A、B兩點,且AB=時,求直線的方程.參考答案:(1)把圓C:,化為,得圓心,半徑,再求圓心到直線的距離,,解得.(2)設圓心到直線的距離,則,則,得或;直線的方程為:或20.已知函數(shù)f(x)在其定義域(0,+∞),f(2)=1,f(xy)=f(x)+f(y),當x>1時,f(x)>0;(1)求f(8)的值;(2)討論函數(shù)f(x)在其定義域(0,+∞)上的單調性;(3)解不等式f(x)+f(x﹣2)≤3.參考答案:【考點】抽象函數(shù)及其應用.【專題】轉化思想;定義法;函數(shù)的性質及應用.【分析】(1)題意知f(2×2)=f(2)+f(2)=2,f(2×4)=f(2)+f(4)=3,f[x(x﹣2)]<f(8),(2)利用函數(shù)單調性的定義即可證明f(x)在定義域上是增函數(shù);(3)由f(x)的定義域為(0,+∞),且在其上為增函數(shù),將不等式進行轉化即可解得答案.【解答】解:(1)∵f(xy)=f(x)+f(y),f(2)=1,∴f(2×2)=f(2)+f(2)=2,∴f(8)=f(2×4)=f(2)+f(4)=3,(2)當x=y=1時,f(1)=f(1)+f(1),則f(1)=0,f(x)在(0,+∞)上是增函數(shù)設x1<x2,則∵f(x1)<f(x2),∴f(x1)﹣f(x2)<0,任取x1,x2∈(0,+∞),且x1<x2,則>1,則f()>0,又f(x?y)=f(x)+f(y),∴f(x1)+f()=f(x2),則f(x2)﹣f(x1)=f()>0,∴f(x2)>f(x1),∴f(x)在定義域內是增函數(shù).(3)由f(x)+f(x﹣2)≤3,∴f(x(x﹣2))≤f(8)∵函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),∴解得,2<x≤4.所以不等式f(x)+f(x﹣2)≤3的解集為{x|2<x≤4}.【點評】本題主要考查抽象函數(shù)的求值,利用賦值法是解決抽象函數(shù)的基本方法,利用函數(shù)的單調性的應用是解決本題的關鍵,考查學生的運算能力.21.(本題滿分16分)已知{an}是公比為q的等比數(shù)列,且am、am+2、am+1成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)設數(shù)列{an}的前n項和為Sn,試判斷Sm、Sm+2、Sm+1是否成等差數(shù)列?并說明理由.參考答案:(Ⅰ)依題意,得2am+2=am+1+am
∴2a1qm+1=a1qm+a1qm–1
在等比數(shù)列{an}中,a1≠0,q≠0,∴2q2=q+1,解得q=1或-.
(Ⅱ)若q=1,Sm+Sm+1=ma1+(m+1)a1=(2m+1)a1,Sm+2=(m+2)a1
∵a1≠0,∴2Sm+2≠Sm+Sm+1
∴2Sm+2=Sm+Sm+1
故當q=1時,Sm,Sm+2,Sm+1不成等差數(shù)列;q=-時,Sm,Sm+2,Sm+1成等差數(shù)列.22.(10分)在四棱錐E﹣ABCD中,底面ABCD是正方形,AC與BD交于點O,EC⊥平面ABCD,F(xiàn)為BE的中點.(1)求證:DE∥平面ACF;(2)求證:BD⊥AE.參考答案:考點: 直線與平面平行的判定.專題: 空間位置關系與距離.分析: (1)利用正方形的性質以及中線性質任意得到OF∥DE,利用線面平行的判定定理可證;(2)利用底面是正方形得到對角線垂直,以及線面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年開發(fā)商與購房者長租公寓買賣合同范本3篇
- 二零二五年度餐飲服務業(yè)勞動合同模板及食品安全3篇
- 二零二五版特種動物繁育與購銷一體化服務合同3篇
- 二零二五年教育機構教學資源整合合同書3篇
- 二零二五年空壓機租賃與應急響應服務合同3篇
- 二零二五年教育培訓機構代理招生合同模板3篇
- 二零二五版未成年人撫養(yǎng)權變更合同3篇
- 二零二五年度財務風險控制合同3篇
- 二零二五年度鋼材采購與智能制造合作合同3篇
- 二零二五版豪華游輪包船旅游運輸服務合同參考模板2篇
- 2024版?zhèn)€人私有房屋購買合同
- 2025年山東光明電力服務公司招聘筆試參考題庫含答案解析
- 《神經發(fā)展障礙 兒童社交溝通障礙康復規(guī)范》
- 2025年中建六局二級子企業(yè)總經理崗位公開招聘高頻重點提升(共500題)附帶答案詳解
- 2024年5月江蘇省事業(yè)單位招聘考試【綜合知識與能力素質】真題及答案解析(管理類和其他類)
- 3-9年級信息技術(人教版、清華版)教科書資源下載
- 瑪氏銷售常用術語中英對照
- (完整)貓咪上門喂養(yǎng)服務協(xié)議書
- 上海牛津版三年級英語3B期末試卷及答案(共5頁)
- 行為疼痛量表BPS
- 小學生必背古詩詞80首(硬筆書法田字格)
評論
0/150
提交評論