湖南省長沙市博才實(shí)驗(yàn)中學(xué)2024年中考數(shù)學(xué)押題卷含解析_第1頁
湖南省長沙市博才實(shí)驗(yàn)中學(xué)2024年中考數(shù)學(xué)押題卷含解析_第2頁
湖南省長沙市博才實(shí)驗(yàn)中學(xué)2024年中考數(shù)學(xué)押題卷含解析_第3頁
湖南省長沙市博才實(shí)驗(yàn)中學(xué)2024年中考數(shù)學(xué)押題卷含解析_第4頁
湖南省長沙市博才實(shí)驗(yàn)中學(xué)2024年中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖南省長沙市博才實(shí)驗(yàn)中學(xué)2024年中考數(shù)學(xué)押題卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.一次數(shù)學(xué)測試后,隨機(jī)抽取九年級某班5名學(xué)生的成績?nèi)缦拢?1,78,1,85,1.關(guān)于這組數(shù)據(jù)說法錯(cuò)誤的是()A.極差是20 B.中位數(shù)是91 C.眾數(shù)是1 D.平均數(shù)是912.下列計(jì)算,正確的是()A.a(chǎn)2?a2=2a2 B.a(chǎn)2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+13.已知x=2是關(guān)于x的一元二次方程x2﹣x﹣2a=0的一個(gè)解,則a的值為()A.0 B.﹣1 C.1 D.24.如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)M是AB的中點(diǎn),若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.105.若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠16.將直線y=﹣x+a的圖象向右平移2個(gè)單位后經(jīng)過點(diǎn)A(3,3),則a的值為()A.4B.﹣4C.2D.﹣27.下列幾何體中,其三視圖都是全等圖形的是()A.圓柱 B.圓錐 C.三棱錐 D.球8.一個(gè)數(shù)和它的倒數(shù)相等,則這個(gè)數(shù)是()A.1 B.0 C.±1 D.±1和09.某射手在同一條件下進(jìn)行射擊,結(jié)果如下表所示:射擊次數(shù)(n)102050100200500……擊中靶心次數(shù)(m)8194492178451……擊中靶心頻率(mn0.800.950.880.920.890.90……由此表推斷這個(gè)射手射擊1次,擊中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.910.如圖是由五個(gè)相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,則另一組新數(shù)據(jù)x1+1,x2+2,x3+3,x4+4,x5+5的平均數(shù)是_____.12.如圖,把一塊含有45°角的直角三角板的兩個(gè)頂點(diǎn)放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是_____.13.已知反比例函數(shù),在其圖象所在的每個(gè)象限內(nèi),的值隨的值增大而減小,那么它的圖象所在的象限是第__________象限.14.如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,連接AC、BD,若S四邊形ABCD=18,則BD的最小值為_________.15.如圖,PA,PB是⊙O是切線,A,B為切點(diǎn),AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.16.如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當(dāng)點(diǎn)C落在直線y=﹣2x﹣6上時(shí),則點(diǎn)C沿x軸向左平移了_____個(gè)單位長度.三、解答題(共8題,共72分)17.(8分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點(diǎn)O,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以4cm/s的速度,沿A→B的路線向點(diǎn)B運(yùn)動(dòng);過點(diǎn)P作PQ∥BD,與AC相交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<1.(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;(2)若點(diǎn)Q關(guān)于O的對稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N,當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?(3)直線PN與AC相交于H點(diǎn),連接PM,NM,是否存在某一時(shí)刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.18.(8分)在△ABC中,,以邊AB上一點(diǎn)O為圓心,OA為半徑的圈與BC相切于點(diǎn)D,分別交AB,AC于點(diǎn)E,F(xiàn)如圖①,連接AD,若,求∠B的大??;如圖②,若點(diǎn)F為的中點(diǎn),的半徑為2,求AB的長.19.(8分)如圖,在△ABC中,∠ACB=90°,AC=1.sin∠A=,點(diǎn)D是BC的中點(diǎn),點(diǎn)P是AB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),延長PD至E,使DE=PD,連接EB、EC.(1)求證;四邊形PBEC是平行四邊形;(2)填空:①當(dāng)AP的值為時(shí),四邊形PBEC是矩形;②當(dāng)AP的值為時(shí),四邊形PBEC是菱形.20.(8分)如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓恰好與BC相切于點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點(diǎn)的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.21.(8分)2017年10月31日,在廣州舉行的世界城市日全球主場活動(dòng)開幕式上,住建部公布許昌成為“國家生態(tài)園林城市”在2018年植樹節(jié)到來之際,許昌某中學(xué)購買了甲、乙兩種樹木用于綠化校園.若購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元.(1)求甲種樹和乙種樹的單價(jià);(2)按學(xué)校規(guī)劃,準(zhǔn)備購買甲、乙兩種樹共200棵,且甲種樹的數(shù)量不少于乙種樹的數(shù)量的,請?jiān)O(shè)計(jì)出最省錢的購買方案,并說明理由.22.(10分)已知?jiǎng)狱c(diǎn)P以每秒2

cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動(dòng),相應(yīng)的△ABP的面積S與時(shí)間t之間的關(guān)系如圖(2)中的圖象表示.若AB=6

cm,試回答下列問題:(1)圖(1)中的BC長是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?23.(12分)某區(qū)對即將參加中考的5000名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請根據(jù)圖表信息回答下列問題:視力頻數(shù)(人)頻率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次調(diào)查的樣本為,樣本容量為;在頻數(shù)分布表中,a=,b=,并將頻數(shù)分布直方圖補(bǔ)充完整;若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計(jì)全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?24.根據(jù)函數(shù)學(xué)習(xí)中積累的知識與經(jīng)驗(yàn),李老師要求學(xué)生探究函數(shù)y=+1的圖象.同學(xué)們通過列表、描點(diǎn)、畫圖象,發(fā)現(xiàn)它的圖象特征,請你補(bǔ)充完整.(1)函數(shù)y=+1的圖象可以由我們熟悉的函數(shù)的圖象向上平移個(gè)單位得到;(2)函數(shù)y=+1的圖象與x軸、y軸交點(diǎn)的情況是:;(3)請你構(gòu)造一個(gè)函數(shù),使其圖象與x軸的交點(diǎn)為(2,0),且與y軸無交點(diǎn),這個(gè)函數(shù)表達(dá)式可以是.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

試題分析:因?yàn)闃O差為:1﹣78=20,所以A選項(xiàng)正確;從小到大排列為:78,85,91,1,1,中位數(shù)為91,所以B選項(xiàng)正確;因?yàn)?出現(xiàn)了兩次,最多,所以眾數(shù)是1,所以C選項(xiàng)正確;因?yàn)?,所以D選項(xiàng)錯(cuò)誤.故選D.考點(diǎn):①眾數(shù)②中位數(shù)③平均數(shù)④極差.2、C【解析】

解:A.故錯(cuò)誤;B.故錯(cuò)誤;C.正確;D.故選C.【點(diǎn)睛】本題考查合并同類項(xiàng),同底數(shù)冪相乘;冪的乘方,以及完全平方公式的計(jì)算,掌握運(yùn)算法則正確計(jì)算是解題關(guān)鍵.3、C【解析】試題分析:把方程的解代入方程,可以求出字母系數(shù)a的值.∵x=2是方程的解,∴4﹣2﹣2a=0,∴a=1.故本題選C.【考點(diǎn)】一元二次方程的解;一元二次方程的定義.4、D【解析】

利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點(diǎn)O,

∴∠BAD=90°,點(diǎn)O是線段BD的中點(diǎn),

∵點(diǎn)M是AB的中點(diǎn),

∴OM是△ABD的中位線,

∴AD=2OM=1.

∴在直角△ABD中,由勾股定理知:BD=.

故選:D.【點(diǎn)睛】本題考查了三角形中位線定理和矩形的性質(zhì),利用三角形中位線定理求得AD的長度是解題的關(guān)鍵.5、C【解析】

根據(jù)題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【點(diǎn)睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關(guān)鍵是熟練掌握:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.6、A【解析】

直接根據(jù)“左加右減”的原則求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【詳解】由“右加左減”的原則可知,將直線y=-x+b向右平移2個(gè)單位所得直線的解析式為:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故選A.【點(diǎn)睛】本題考查了一次函數(shù)圖象的平移,一次函數(shù)圖象的平移規(guī)律是:①y=kx+b向左平移m個(gè)單位,是y=k(x+m)+b,向右平移m個(gè)單位是y=k(x-m)+b,即左右平移時(shí),自變量x左加右減;②y=kx+b向上平移n個(gè)單位,是y=kx+b+n,向下平移n個(gè)單位是y=kx+b-n,即上下平移時(shí),b的值上加下減.7、D【解析】分析:任意方向上的視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,其他的幾何體的視圖都有不同的.詳解:圓柱,圓錐,三棱錐,球中,三視圖都是全等圖形的幾何體只有球,在任意方向上的視圖都是圓,故選D.點(diǎn)睛:本題考查簡單幾何體的三視圖,本題解題的關(guān)鍵是看出各個(gè)圖形的在任意方向上的視圖.8、C【解析】

根據(jù)倒數(shù)的定義即可求解.【詳解】的倒數(shù)等于它本身,故符合題意.

故選:.【點(diǎn)睛】主要考查倒數(shù)的概念及性質(zhì).倒數(shù)的定義:若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).9、D【解析】

觀察表格的數(shù)據(jù)可以得到擊中靶心的頻率,然后用頻率估計(jì)概率即可求解.【詳解】依題意得擊中靶心頻率為0.90,估計(jì)這名射手射擊一次,擊中靶心的概率約為0.90.故選:D.【點(diǎn)睛】此題主要考查了利用頻率估計(jì)概率,首先通過實(shí)驗(yàn)得到事件的頻率,然后用頻率估計(jì)概率即可解決問題.10、A【解析】試題分析:從上面看易得上面一層有3個(gè)正方形,下面中間有一個(gè)正方形.故選A.【考點(diǎn)】簡單組合體的三視圖.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】

根據(jù)平均數(shù)的性質(zhì)知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均數(shù),只要把數(shù)x1、x2、x3、x4、x5的和表示出即可.【詳解】∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是3,∴x1+x2+x3+x4+x5=15,則新數(shù)據(jù)的平均數(shù)為=1,故答案為:1.【點(diǎn)睛】本題考查的是樣本平均數(shù)的求法.解決本題的關(guān)鍵是用一組數(shù)據(jù)的平均數(shù)表示另一組數(shù)據(jù)的平均數(shù).12、25°.【解析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.13、【解析】

直接利用反比例函數(shù)的增減性進(jìn)而得出圖象的分布.【詳解】∵反比例函數(shù)y(k≠0),在其圖象所在的每個(gè)象限內(nèi),y的值隨x的值增大而減小,∴它的圖象所在的象限是第一、三象限.故答案為:一、三.【點(diǎn)睛】本題考查了反比例的性質(zhì),正確掌握反比例函數(shù)圖象的分布規(guī)律是解題的關(guān)鍵.14、6【解析】

過A作AM⊥CD于M,過A作AN⊥BC于N,先根據(jù)“AAS”證明△DAM≌△BAN,再證明四邊形AMCN為正方形,可求得AC=6,從而當(dāng)BD⊥AC時(shí)BD最小,且最小值為6.【詳解】如下圖,過A作AM⊥CD于M,過A作AN⊥BC于N,則∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四邊形AMCN為正方形,∴S四邊形ABCD=S四邊形AMCN=AC2,∴AC=6,∴BD⊥AC時(shí)BD最小,且最小值為6.故答案為:6.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),正方形的判定與性質(zhì),正確作出輔助線是解答本題的關(guān)鍵.15、1.【解析】

由PA、PB是圓O的切線,根據(jù)切線長定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數(shù),利用三角形的內(nèi)角和定理求出底角的度數(shù),再由AP為圓O的切線,得到OA與AP垂直,根據(jù)垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數(shù)【詳解】∵PA,PB是⊙O是切線,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線,AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【點(diǎn)睛】此題考查了切線的性質(zhì),切線長定理,等腰三角形的性質(zhì),以及三角形的內(nèi)角和定理,熟練掌握定理及性質(zhì)是解本題的關(guān)鍵.16、1【解析】

先根據(jù)勾股定理求得AC的長,從而得到C點(diǎn)坐標(biāo),然后根據(jù)平移的性質(zhì),將C點(diǎn)縱軸代入直線解析式求解即可得到答案.【詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點(diǎn)C的坐標(biāo)為(﹣1,1).當(dāng)y=﹣2x﹣6=1時(shí),x=﹣5,∵﹣1﹣(﹣5)=1,∴點(diǎn)C沿x軸向左平移1個(gè)單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【點(diǎn)睛】本題主要考查平移的性質(zhì),解此題的關(guān)鍵在于先利用勾股定理求得相關(guān)點(diǎn)的坐標(biāo),然后根據(jù)平移的性質(zhì)將其縱坐標(biāo)代入直線函數(shù)式求解即可.三、解答題(共8題,共72分)17、(1)S=﹣2(0<t<1);(2);(3)見解析.【解析】

(1)如圖1,根據(jù)S=S△ABC-S△APQ,代入可得S與t的關(guān)系式;

(2)設(shè)PM=x,則AM=2x,可得AP=x=4t,計(jì)算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;

(3)存在,通過畫圖可知:N在CD上時(shí),直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點(diǎn)Q關(guān)于O的對稱點(diǎn)為M,∴OM=OQ,設(shè)PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當(dāng)t為秒時(shí),點(diǎn)P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當(dāng)t為秒時(shí),使得直線PN平分四邊形APMN的面積.【點(diǎn)睛】考查了全等三角形的判定與性質(zhì),對稱的性質(zhì),三角形和四邊形的面積,二次根式的化簡等知識點(diǎn),計(jì)算量大,解答本題的關(guān)鍵是熟練掌握動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)所構(gòu)成的三角形各邊的關(guān)系.18、(1)∠B=40°;(2)AB=6.【解析】

(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD

,即可求得∠CAD=∠ADO

,繼而求得答案;

(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD

,由點(diǎn)F為弧AD的中點(diǎn),易得△AOF是等邊三角形,繼而求得答案.【詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點(diǎn)D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點(diǎn)F為弧AD的中點(diǎn),∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【點(diǎn)睛】本題考查了切線的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),弧弦圓心角的關(guān)系,等邊三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì).熟練掌握切線的性質(zhì)是解(1)的關(guān)鍵,證明△AOF為等邊三角形是解(2)的關(guān)鍵.19、證明見解析;(2)①9;②12.5.【解析】

(1)根據(jù)對角線互相平分的四邊形為平行四邊形證明即可;(2)①若四邊形PBEC是矩形,則∠APC=90°,求得AP即可;②若四邊形PBEC是菱形,則CP=PB,求得AP即可.【詳解】∵點(diǎn)D是BC的中點(diǎn),∴BD=CD.∵DE=PD,∴四邊形PBEC是平行四邊形;(2)①當(dāng)∠APC=90°時(shí),四邊形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴當(dāng)AP的值為9時(shí),四邊形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以設(shè)BC=4x,AB=5x,則(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.當(dāng)PC=PB時(shí),四邊形PBEC是菱形,此時(shí)點(diǎn)P為AB的中點(diǎn),所以AP=12.5,∴當(dāng)AP的值為12.5時(shí),四邊形PBEC是菱形.【點(diǎn)睛】本題考查了菱形的判定、平行四邊形的判定和性質(zhì)、矩形的判定,解題的關(guān)鍵是掌握特殊圖形的判定以及重要的性質(zhì).20、(1)見解析;(2)【解析】

(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得CD的長,在RT△ACD中,AD=,即可求出AD長度.【詳解】解:(1)證明:連接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等邊三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四邊形AODE是平行四邊形,∵OD=OA∴四邊形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【點(diǎn)睛】本題主要考查圓中的計(jì)算問題、菱形以及相似三角形的判定與性質(zhì)21、(1)甲種樹的單價(jià)為50元/棵,乙種樹的單價(jià)為40元/棵.(2)當(dāng)購買1棵甲種樹、133棵乙種樹時(shí),購買費(fèi)用最低,理由見解析.【解析】

(1)設(shè)甲種樹的單價(jià)為x元/棵,乙種樹的單價(jià)為y元/棵,根據(jù)“購買7棵甲種樹和4棵乙種樹需510元;購買3棵甲種樹和5棵乙種樹需350元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;

(2)設(shè)購買甲種樹a棵,則購買乙種樹(200-a)棵,根據(jù)甲種樹的數(shù)量不少于乙種樹的數(shù)量的可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍,再由甲種樹的單價(jià)比乙種樹的單價(jià)貴,即可找出最省錢的購買方案.【詳解】解:(1)設(shè)甲種樹的單價(jià)為x元/棵,乙種樹的單價(jià)為y元/棵,根據(jù)題意得:

,解得:答:甲種樹的單價(jià)為50元/棵,乙種樹的單價(jià)為40元/棵.(2)設(shè)購買甲種樹a棵,則購買乙種樹(200﹣a)棵,根據(jù)題意得:解得:∵a為整數(shù),∴a≥1.∵甲種樹的單價(jià)比乙種樹的單價(jià)貴,∴當(dāng)購買1棵甲種樹、133棵乙種樹時(shí),購買費(fèi)用最低.【點(diǎn)睛】一元一次不等式的應(yīng)用,二元一次方程組的應(yīng)用,讀懂題目,是解題的關(guān)鍵.22、(1)8cm(2)24cm2(3)60cm2(4)17s【解析】

(1)根據(jù)題意得:動(dòng)點(diǎn)P在BC上運(yùn)動(dòng)的時(shí)間是4秒,又由動(dòng)點(diǎn)的速度,可得BC的長;(2)由(1)可得BC的長,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論