內(nèi)蒙古烏海市海南區(qū)2024屆中考數(shù)學模擬預測題含解析_第1頁
內(nèi)蒙古烏海市海南區(qū)2024屆中考數(shù)學模擬預測題含解析_第2頁
內(nèi)蒙古烏海市海南區(qū)2024屆中考數(shù)學模擬預測題含解析_第3頁
內(nèi)蒙古烏海市海南區(qū)2024屆中考數(shù)學模擬預測題含解析_第4頁
內(nèi)蒙古烏海市海南區(qū)2024屆中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

內(nèi)蒙古烏海市海南區(qū)2024屆中考數(shù)學模擬預測題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.的相反數(shù)是()A. B. C.3 D.-32.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優(yōu)弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°3.如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM,ON上滑動,下列結(jié)論:①若C,O兩點關于AB對稱,則OA=;②C,O兩點距離的最大值為4;③若AB平分CO,則AB⊥CO;④斜邊AB的中點D運動路徑的長為π.其中正確的是()A.①② B.①②③ C.①③④ D.①②④4.如圖所示的四個圖案是四國冬季奧林匹克運動會會徽圖案上的一部分圖形,其中為軸對稱圖形的是()A. B. C. D.5.如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設CD=y,BP=x,則y與x函數(shù)關系的大致圖象是()A. B. C. D.6.下列各數(shù)中,無理數(shù)是()A.0 B. C. D.π7.如圖所示,在折紙活動中,小明制作了一張△ABC紙片,點D,E分別在邊AB,AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=70°,則∠1+∠2=()A.70° B.110° C.130° D.140°8.李老師為了了解學生暑期在家的閱讀情況,隨機調(diào)查了20名學生某一天的閱讀小時數(shù),具體情況統(tǒng)計如下:閱讀時間(小時)22.533.54學生人數(shù)(名)12863則關于這20名學生閱讀小時數(shù)的說法正確的是()A.眾數(shù)是8 B.中位數(shù)是3C.平均數(shù)是3 D.方差是0.349.一、單選題點P(2,﹣1)關于原點對稱的點P′的坐標是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)10.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數(shù)為()A.105° B.110° C.115° D.120°二、填空題(本大題共6個小題,每小題3分,共18分)11.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.12.點A(a,b)與點B(﹣3,4)關于y軸對稱,則a+b的值為_____.13.的相反數(shù)是______.14.一個等腰三角形的兩邊長分別為4cm和9cm,則它的周長為__cm.15.如圖,在平面直角坐標系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點C為⊙O上一動點,過點B作BP⊥直線AC,垂足為點P,則P點縱坐標的最大值為cm.16.為了了解貫徹執(zhí)行國家提倡的“陽光體育運動”的實施情況,將某班50名同學一周的體育鍛煉情況繪制成了如圖所示的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的數(shù)據(jù),該班50名同學一周參加體育鍛煉時間的中位數(shù)與眾數(shù)之和為_____.三、解答題(共8題,共72分)17.(8分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:分組頻數(shù)頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?18.(8分)某蔬菜加工公司先后兩次收購某時令蔬菜200噸,第一批蔬菜價格為2000元/噸,因蔬菜大量上市,第二批收購時價格變?yōu)?00元/噸,這兩批蔬菜共用去16萬元.(1)求兩批次購蔬菜各購進多少噸?(2)公司收購后對蔬菜進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤800元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?19.(8分)如圖,在自動向西的公路l上有一檢查站A,在觀測點B的南偏西53°方向,檢查站一工作人員家住在與觀測點B的距離為7km,位于點B南偏西76°方向的點C處,求工作人員家到檢查站的距離AC.(參考數(shù)據(jù):sin76°≈,cos76°≈,tan76°≈4,sin53°≈,tan53°≈)20.(8分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,點D在AB上,DE⊥EB.(1)求證:AC是△BDE的外接圓的切線;(2)若AD=23,AE=6,求EC的長.21.(8分)如圖,在平面直角坐標系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側(cè)),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.22.(10分)已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數(shù)圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數(shù)圖象的伴侶正方形.如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數(shù)是反比例函數(shù)(k>0),它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個數(shù)是奇數(shù)還是偶數(shù)?_____.(本小題只需直接寫出答案)23.(12分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數(shù)軸上表示出來.24.已知2是關于x的方程x2﹣2mx+3m=0的一個根,且這個方程的兩個根恰好是等腰△ABC的兩條邊長,則△ABC的周長為_____.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】先求的絕對值,再求其相反數(shù):根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點到原點的距離是,所以的絕對值是;相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.因此的相反數(shù)是.故選B.2、C【解析】

由切線的性質(zhì)可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據(jù)直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點:切線的性質(zhì).3、D【解析】分析:①先根據(jù)直角三角形30°的性質(zhì)和勾股定理分別求AC和AB,由對稱的性質(zhì)可知:AB是OC的垂直平分線,所以

②當OC經(jīng)過AB的中點E時,OC最大,則C、O兩點距離的最大值為4;

③如圖2,當∠ABO=30°時,易證四邊形OACB是矩形,此時AB與CO互相平分,但所夾銳角為60°,明顯不垂直,或者根據(jù)四點共圓可知:A、C、B、O四點共圓,則AB為直徑,由垂徑定理相關推論:平分弦(不是直徑)的直徑垂直于這條弦,但當這條弦也是直徑時,即OC是直徑時,AB與OC互相平分,但AB與OC不一定垂直;

④如圖3,半徑為2,圓心角為90°,根據(jù)弧長公式進行計算即可.詳解:在Rt△ABC中,∵∴①若C.O兩點關于AB對稱,如圖1,∴AB是OC的垂直平分線,則所以①正確;②如圖1,取AB的中點為E,連接OE、CE,∵∴當OC經(jīng)過點E時,OC最大,則C.O兩點距離的最大值為4;所以②正確;③如圖2,當時,∴四邊形AOBC是矩形,∴AB與OC互相平分,但AB與OC的夾角為不垂直,所以③不正確;④如圖3,斜邊AB的中點D運動路徑是:以O為圓心,以2為半徑的圓周的則:所以④正確;綜上所述,本題正確的有:①②④;故選D.點睛:屬于三角形的綜合體,考查了直角三角形的性質(zhì),直角三角形斜邊上中線的性質(zhì),軸對稱的性質(zhì),弧長公式等,熟練掌握直角三角形斜邊的中線等于斜邊的一半是解題的關鍵.4、D【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】解:根據(jù)軸對稱圖形的概念,A、B、C都不是軸對稱圖形,D是軸對稱圖形.

故選D.【點睛】本題主要考查軸對稱圖形,軸對稱圖形的判斷方法:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形5、C【解析】

根據(jù)等邊三角形的性質(zhì)可得出∠B=∠C=60°,由等角的補角相等可得出∠BAP=∠CPD,進而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)即可得出y=-x2+x,對照四個選項即可得出.【詳解】∵△ABC為等邊三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點睛】考查了動點問題的函數(shù)圖象、相似三角形的判定與性質(zhì),利用相似三角形的性質(zhì)找出y=-x2+x是解題的關鍵.6、D【解析】

利用無理數(shù)定義判斷即可.【詳解】解:π是無理數(shù),故選:D.【點睛】此題考查了無理數(shù),弄清無理數(shù)的定義是解本題的關鍵.7、D【解析】∵四邊形ADA'E的內(nèi)角和為(4-2)?180°=360°,而由折疊可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.8、B【解析】

A、根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù);B、根據(jù)中位數(shù)的定義將這組數(shù)據(jù)從小到大重新排列,求出最中間的2個數(shù)的平均數(shù),即可得出中位數(shù);C、根據(jù)加權平均數(shù)公式代入計算可得;D、根據(jù)方差公式計算即可.【詳解】解:A、由統(tǒng)計表得:眾數(shù)為3,不是8,所以此選項不正確;B、隨機調(diào)查了20名學生,所以中位數(shù)是第10個和第11個學生的閱讀小時數(shù),都是3,故中位數(shù)是3,所以此選項正確;C、平均數(shù)=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【點睛】本題考查方差;加權平均數(shù);中位數(shù);眾數(shù).9、A【解析】

根據(jù)“關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù)”解答.【詳解】解:點P(2,-1)關于原點對稱的點的坐標是(-2,1).故選A.【點睛】本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).10、C【解析】

如圖,首先證明∠AMO=∠2,然后運用對頂角的性質(zhì)求出∠ANM=55°;借助三角形外角的性質(zhì)求出∠AMO即可解決問題.【詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì),熟練掌握和靈活運用相關知識是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

設AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關系求得,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值.【詳解】設AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關系有,解得,故當時,取得最大值,

故答案為:.【點睛】本題主要考查了余弦定理和面積公式在解三角形中的應用,考查了二次函數(shù)的性質(zhì),考查了計算能力,當涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.12、1【解析】

根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”解答即可.【詳解】解:∵點與點關于y軸對稱,∴故答案為1.【點睛】考查關于軸對稱的點的坐標特征,縱坐標不變,橫坐標互為相反數(shù).13、﹣.【解析】

根據(jù)只有符號不同的兩個數(shù)叫做互為相反數(shù)解答.【詳解】的相反數(shù)是.故答案為.【點睛】本題考查的知識點是相反數(shù),解題關鍵是熟記相反數(shù)的概念.14、1【解析】

底邊可能是4,也可能是9,分類討論,去掉不合條件的,然后可求周長.【詳解】試題解析:①當腰是4cm,底邊是9cm時:不滿足三角形的三邊關系,因此舍去.②當?shù)走吺?cm,腰長是9cm時,能構(gòu)成三角形,則其周長=4+9+9=1cm.故填1.【點睛】本題考查了等腰三角形的性質(zhì)和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構(gòu)成三角形進行解答.15、【解析】

當AC與⊙O相切于點C時,P點縱坐標的最大值,如圖,直線AC交y軸于點D,連結(jié)OC,作CH⊥x軸于H,PM⊥x軸于M,DN⊥PM于N,∵AC為切線,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P點縱坐標的最大值為.【點睛】本題是圓的綜合題,先求出OD的長度,最后根據(jù)兩點之間線段最短求出PN+MN的值.16、17【解析】∵8是出現(xiàn)次數(shù)最多的,∴眾數(shù)是8,∵這組數(shù)據(jù)從小到大的順序排列,處于中間位置的兩個數(shù)都是9,∴中位數(shù)是9,所以中位數(shù)與眾數(shù)之和為8+9=17.故答案為17小時.三、解答題(共8題,共72分)17、0.34【解析】

(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.【詳解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵總?cè)藬?shù)為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為0.3,4;補全統(tǒng)計圖得:(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結(jié)果,所選兩人正好都是甲班學生的有3種情況,∴所選兩人正好都是甲班學生的概率是:=.【點睛】本題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、(1)第一次購進40噸,第二次購進160噸;(2)為獲得最大利潤,精加工數(shù)量應為150噸,最大利潤是1.【解析】

(1)設第一批購進蒜薹a噸,第二批購進蒜薹b噸.構(gòu)建方程組即可解決問題.(2)設精加工x噸,利潤為w元,則粗加工(100-x)噸.利潤w=800x+400(200﹣x)=400x+80000,再由x≤3(100-x),解得x≤150,即可解決問題.【詳解】(1)設第一次購進a噸,第二次購進b噸,,解得,答:第一次購進40噸,第二次購進160噸;(2)設精加工x噸,利潤為w元,w=800x+400(200﹣x)=400x+80000,∵x≤3(200﹣x),解得,x≤150,∴當x=150時,w取得最大值,此時w=1,答:為獲得最大利潤,精加工數(shù)量應為150噸,最大利潤是1.【點睛】本題考查了二元一次方程組的應用與一次函數(shù)的應用,解題的關鍵是熟練的掌握二元一次方程組的應用與一次函數(shù)的應用.19、工作人員家到檢查站的距離AC的長約為km.【解析】分析:過點B作BH⊥l交l于點H,解Rt△BCH,得出CH=BC?sin∠CBH=,BH=BC?cos∠CBH=.再解Rt△BAH中,求出AH=BH?tan∠ABH=,那么根據(jù)AC=CH-AH計算即可.詳解:如圖,過點B作BH⊥l交l于點H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7km,∴CH=BC?sin∠CBH≈,BH=BC?cos∠CBH≈.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=,∴AH=BH?tan∠ABH≈,∴AC=CH﹣AH=(km).答:工作人員家到檢查站的距離AC的長約為km.點睛:本題考查的是解直角三角形的應用-方向角問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關鍵.20、(1)證明見解析;(2)1.【解析】試題分析:(1)取BD的中點0,連結(jié)OE,如圖,由∠BED=90°,根據(jù)圓周角定理可得BD為△BDE的外接圓的直徑,點O為△BDE的外接圓的圓心,再證明OE∥BC,得到∠AEO=∠C=90°,于是可根據(jù)切線的判定定理判斷AC是△BDE的外接圓的切線;(2)設⊙O的半徑為r,根據(jù)勾股定理得62+r2=(r+23)2,解得r=23,根據(jù)平行線分線段成比例定理,由OE∥BC得AECE試題解析:(1)證明:取BD的中點0,連結(jié)OE,如圖,∵DE⊥EB,∴∠BED=90°,∴BD為△BDE的外接圓的直徑,點O為△BDE的外接圓的圓心,∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠EB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴OE⊥AE,∴AC是△BDE的外接圓的切線;(2)解:設⊙O的半徑為r,則OA=OD+DA=r+23,OE=r,在Rt△AEO中,∵AE2+OE2=AO2,∴62+r2=(r+23)2,解得r=23,∵OE∥BC,∴AECE=AO∴CE=1.考點:1、切線的判定;2、勾股定理21、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當a=時,D、O、C、B四點共圓.【解析】【分析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(jù)(1)中A、B、D的坐標,得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點C(,-),從而得PB=3-=,PC=;再分情況討論:①當△AOD∽△BPC時,根據(jù)相似三角形性質(zhì)得,

解得:a=3(舍去);②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點C也在此圓上,則MC=MB,根據(jù)兩點間的距離公式得一個關于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點A、B(點A在點B的左側(cè)),∴A(a,0),B(3,0),當x=0時,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當x=時,y=-,∴C(,-),∴PB=3-=,PC=,①當△AOD∽△BPC時,∴,即,

解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點M,∵D、B、O三點共圓,且BD為直徑,圓心為M(,a),若點C也在此圓上,∴MC=MB,∴,化簡得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當a=時,D、O、C、B四點共圓.【點睛】本題考查了二次函數(shù)、相似三角形的性質(zhì)、四點共圓等,綜合性較強,有一定的難度,正確進行分析,熟練應用相關知識是解題的關鍵.22、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),對應的拋物線分別為;;,偶數(shù).【解析】

(1)設正方形ABCD的邊長為a,當點A在x軸負半軸、點B在y軸正半軸上時,可知3a=,求出a,

(2)作DE、CF分別垂直于x、y軸,可知ADE≌△BAO≌△CBF,列出m的等式解出m,

(3)本問的拋物線解析式不止一個,求出其中一個.【詳解】解:(1)∵正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.當點A在x軸正半軸、點B在y軸負半軸上時,∴AO=1,BO=1,∴正方形ABCD的邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論