版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省石家莊市四十一中學2024年中考猜題數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.估計的值在()A.4和5之間 B.5和6之間 C.6和7之間 D.7和8之間2.如圖是一組有規(guī)律的圖案,它們是由邊長相同的小正方形組成的,其中部分小正方形涂有陰影,依此規(guī)律,第2018個圖案中涂有陰影的小正方形個數為()A.8073 B.8072 C.8071 D.80703.若拋物線y=x2-(m-3)x-m能與x軸交,則兩交點間的距離最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值24.下列由左邊到右邊的變形,屬于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)5.的平方根是()A.2 B. C.±2 D.±6.如圖,是一次函數y=kx+b與反比例函數y=的圖象,則關于x的不等式kx+b>的解集為A.x>1 B.﹣2<x<1C.﹣2<x<0或x>1 D.x<﹣27.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1258.如圖,正六邊形ABCDEF內接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.49.如圖,將木條a,b與c釘在一起,∠1=70°,∠2=50°,要使木條a與b平行,木條a旋轉的度數至少是()A.10° B.20° C.50° D.70°10.如圖,是的直徑,是的弦,連接,,,則與的數量關系為()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知a,b為兩個連續(xù)的整數,且a<<b,則ba=_____.12.如圖,在△ABC中,DE∥BC,,則=_____.13.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點,AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.14.舉重比賽的總成績是選手的挺舉與抓舉兩項成績之和,若其中一項三次挑戰(zhàn)失敗,則該項成績?yōu)?,甲、乙是同一重量級別的舉重選手,他們近三年六次重要比賽的成績如下(單位:公斤):如果你是教練,要選派一名選手參加國際比賽,那么你會選擇_____(填“甲”或“乙”),理由是___________.15.如圖,在邊長為1的正方形格點圖中,B、D、E為格點,則∠BAC的正切值為_____.16.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.17.如圖,四邊形ABCD中,E,F,G,H分別是邊AB、BC、CD、DA的中點.若四邊形EFGH為菱形,則對角線AC、BD應滿足條件_____.三、解答題(共7小題,滿分69分)18.(10分)解不等式:3x﹣1>2(x﹣1),并把它的解集在數軸上表示出來.19.(5分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連接AP、OP、OA.(1)求證:;(2)若△OCP與△PDA的面積比為1:4,求邊AB的長.20.(8分)某區(qū)域平面示意圖如圖,點O在河的一側,AC和BC表示兩條互相垂直的公路.甲勘測員在A處測得點O位于北偏東45°,乙勘測員在B處測得點O位于南偏西73.7°,測得AC=840m,BC=500m.請求出點O到BC的距離.參考數據:sin73.7°≈,cos73.7°≈,tan73.7°≈21.(10分)如圖,正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,連接AF,求∠OFA的度數22.(10分)已知,在菱形ABCD中,∠ADC=60°,點H為CD上任意一點(不與C、D重合),過點H作CD的垂線,交BD于點E,連接AE.(1)如圖1,線段EH、CH、AE之間的數量關系是;(2)如圖2,將△DHE繞點D順時針旋轉,當點E、H、C在一條直線上時,求證:AE+EH=CH.23.(12分)在銳角△ABC中,邊BC長為18,高AD長為12如圖,矩形EFCH的邊GH在BC邊上,其余兩個頂點E、F分別在AB、AC邊上,EF交AD于點K,求的值;設EH=x,矩形EFGH的面積為S,求S與x的函數關系式,并求S的最大值.24.(14分)如圖,在△ABC中,CD⊥AB于點D,tanA=2cos∠BCD,(1)求證:BC=2AD;(2)若cosB=,AB=10,求CD的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】∵,∴.即的值在6和7之間.故選C.2、A【解析】
觀察圖形可知第1個、第2個、第3個圖案中涂有陰影的小正方形的個數,易歸納出第n個圖案中涂有陰影的小正方形個數為:4n+1,由此求解即可.【詳解】解:觀察圖形的變化可知:第1個圖案中涂有陰影的小正方形個數為:5=4×1+1;第2個圖案中涂有陰影的小正方形個數為:9=4×2+1;第3個圖案中涂有陰影的小正方形個數為:13=4×3+1;…發(fā)現規(guī)律:第n個圖案中涂有陰影的小正方形個數為:4n+1;∴第2018個圖案中涂有陰影的小正方形個數為:4n+1=4×2018+1=1.故選:A.【點睛】本題考查了圖形的變化規(guī)律,根據已有圖形確定其變化規(guī)律是解題的關鍵.3、D【解析】設拋物線與x軸的兩交點間的橫坐標分別為:x1,x2,
由韋達定理得:x1+x2=m-3,x1?x2=-m,則兩交點間的距離d=|x1-x2|==,∴m=1時,dmin=2.故選D.4、C【解析】
因式分解是把一個多項式化為幾個整式的積的形式,據此進行解答即可.【詳解】解:A、B、D三個選項均不是把一個多項式化為幾個整式的積的形式,故都不是因式分解,只有C選項符合因式分解的定義,故選擇C.【點睛】本題考查了因式分解的定義,牢記定義是解題關鍵.5、D【解析】
先化簡,然后再根據平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術平方根,先把正確化簡是解題的關鍵,本題比較容易出錯.6、C【解析】
根據反比例函數與一次函數在同一坐標系內的圖象可直接解答.【詳解】觀察圖象,兩函數圖象的交點坐標為(1,2),(-2,-1),kx+b>的解就是一次函數y=kx+b圖象在反比例函數y=的圖象的上方的時候x的取值范圍,
由圖象可得:-2<x<0或x>1,
故選C.【點睛】本題考查的是反比例涵數與一次函數圖象在同一坐標系中二者的圖象之間的關系.一般這種類型的題不要計算反比計算表達式,解不等式,直接從從圖象上直接解答.7、B【解析】
根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.8、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據銳角三角函數的定義求解即可.詳解:如圖所示,連接OC、OB
∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質、等邊三角形的判定與性質、三角函數;熟練掌握正六邊形的性質,由三角函數求出OM是解決問題的關鍵.9、B【解析】
要使木條a與b平行,那么∠1=∠2,從而可求出木條a至少旋轉的度數.【詳解】解:∵要使木條a與b平行,∴∠1=∠2,∴當∠1需變?yōu)?0o,∴木條a至少旋轉:70o-50o=20o.故選B.【點睛】本題考查了旋轉的性質及平行線的性質:①兩直線平行同位角相等;②兩直線平行內錯角相等;③兩直線平行同旁內角互補;④夾在兩平行線間的平行線段相等.在運用平行線的性質定理時,一定要找準同位角,內錯角和同旁內角.10、C【解析】
首先根據圓周角定理可知∠B=∠C,再根據直徑所得的圓周角是直角可得∠ADB=90°,然后根據三角形的內角和定理可得∠DAB+∠B=90°,所以得到∠DAB+∠C=90°,從而得到結果.【詳解】解:∵是的直徑,∴∠ADB=90°.∴∠DAB+∠B=90°.∵∠B=∠C,∴∠DAB+∠C=90°.故選C.【點睛】本題考查了圓周角定理及其逆定理和三角形的內角和定理,掌握相關知識進行轉化是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
根據已知a<<b,結合a、b是兩個連續(xù)的整數可得a、b的值,即可求解.【詳解】解:∵a,b為兩個連續(xù)的整數,且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【點睛】此題考查的是如何根據無理數的范圍確定兩個有理數的值,題中根據的取值范圍,可以很容易得到其相鄰兩個整數,再結合已知條件即可確定a、b的值,12、【解析】
先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【點睛】本題考查了相似三角形的判定和性質,中等難度,熟記相似三角形的面積比等于相似比的平方是解題關鍵.13、1【解析】
如圖作點D關于BC的對稱點D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當E、F、P、D′共線時,PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點D關于BC的對稱點D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當E、F、P、D′共線時,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點睛】本題考查翻折變換、矩形的性質、勾股定理等知識,解題的關鍵是學會利用軸對稱,根據兩點之間線段最短解決最短問題.14、乙乙的比賽成績比較穩(wěn)定.【解析】
觀察表格中的數據可知:甲的比賽成績波動幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩(wěn)定,據此可得結論.【詳解】觀察表格中的數據可得,甲的比賽成績波動幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩(wěn)定;所以要選派一名選手參加國際比賽,應該選擇乙,理由是乙的比賽成績比較穩(wěn)定.故答案為乙,乙的比賽成績比較穩(wěn)定.【點睛】本題主要考查了方差,方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則它與其平均值的離散程度越小,穩(wěn)定性越好.15、【解析】
根據圓周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.【詳解】由圖可得,∠BAC=∠BDC,∵⊙O在邊長為1的網格格點上,∴BE=3,DB=4,則tan∠BDC==∴tan∠BAC=故答案為【點睛】本題考查的知識點是圓周角定理及其推論及解直角三角形,解題的關鍵是熟練的掌握圓周角定理及其推論及解直角三角形.16、【解析】試題解析:所以故答案為17、AC=BD.【解析】試題分析:添加的條件應為:AC=BD,把AC=BD作為已知條件,根據三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形.試題解析:添加的條件應為:AC=BD.證明:∵E,F,G,H分別是邊AB、BC、CD、DA的中點,∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,則HG∥EF且HG=EF,∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,∴四邊形EFGH為菱形.考點:1.菱形的性質;2.三角形中位線定理.三、解答題(共7小題,滿分69分)18、【解析】試題分析:按照解一元一次不等式的步驟解不等式即可.試題解析:,,.解集在數軸上表示如下點睛:解一元一次不等式一般步驟:去分母,去括號,移項,合并同類項,把系數化為1.19、(1)詳見解析;(2)10.【解析】
①只需證明兩對對應角分別相等可得兩個三角形相似;故.
②根據相似三角形的性質求出PC長以及AP與OP的關系,然后在Rt△PCO中運用勾股定理求出OP長,從而求出AB長.【詳解】①∵四邊形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折疊可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°?∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP與△PDA的面積比為1:4,∴OCPD=OPPA=CPDA=14??√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.設OP=x,則OB=x,CO=8?x.在△PCO中,∵∠C=90°,CP=4,OP=x,CO=8?x,∴x2=(8?x)2+42.解得:x=5.∴AB=AP=2OP=10.∴邊AB的長為10.【點睛】本題考查了相似三角形的判定與性質以及翻轉變換,解題的關鍵是熟練的掌握相似三角形與翻轉變換的相關知識.20、點O到BC的距離為480m.【解析】
作OM⊥BC于M,ON⊥AC于N,設OM=x,根據矩形的性質用x表示出OM、MC,根據正切的定義用x表示出BM,根據題意列式計算即可.【詳解】作OM⊥BC于M,ON⊥AC于N,則四邊形ONCM為矩形,∴ON=MC,OM=NC,設OM=x,則NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,則MC=ON=840﹣x,在Rt△BOM中,BM==x,由題意得,840﹣x+x=500,解得,x=480,答:點O到BC的距離為480m.【點睛】本題考查的是解直角三角形的應用,掌握銳角三角函數的定義、正確標注方向角是解題的關鍵.21、25°【解析】
先利用正方形的性質得OA=OC,∠AOC=90°,再根據旋轉的性質得OC=OF,∠COF=40°,則OA=OF,根據等腰三角形的性質得∠OAF=∠OFA,然后根據三角形的內角和定理計算∠OFA的度數.【詳解】解:∵四邊形OABC為正方形,∴OA=OC,∠AOC=90°,∵正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,∴OC=OF,∠COF=40°,∴OA=OF,∴∠OAF=∠OFA,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=(180°-130°)=25°.故答案為25°.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了正方形的性質.22、(1)EH2+CH2=AE2;(2)見解析.【解析】分析:(1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據全等三角形的性質得到EM=EH,DM=DH,等量代換得到AM=CH,根據勾股定理即可得到結論;
(2)如圖2,根據菱形的性質得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質得到∠EDG=60°,推出△DAE≌△DCG,根據全等三角形的性質即可得到結論.詳解:(1)EH2+CH2=AE2,如圖1,過E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《供應商開發(fā)選擇》課件
- 《拿來主義》課件 2024-2025學年統編版高中語文必修上冊
- 2025屆江蘇省連云港市海頭高級中學高考全國統考預測密卷數學試卷含解析
- 內蒙古鄂爾多斯市達拉特旗第一中學2025屆高考考前模擬數學試題含解析
- 2025屆廣西玉林市玉州區(qū)高考適應性考試數學試卷含解析
- 吉林省四平市公主嶺市第五高級中學2025屆高考語文考前最后一卷預測卷含解析
- 山西太原五中2025屆高三最后一卷語文試卷含解析
- 2025屆山東省東營市墾利縣第一中學高三下學期聯合考試數學試題含解析
- 《保險公司內勤早會》課件
- 吉林省長春市“BEST合作體”2025屆高考全國統考預測密卷數學試卷含解析
- 2024年員工績效考核合同3篇
- 地推活動合同范例
- 昆明理工大學《自然語言處理》2022-2023學年第一學期期末試卷
- 陳義小學進城務工人員隨遷子女入學工作制度和措施
- 部編版六年級道德與法治上冊第9課《知法守法 依法維權》精美課件(第2課時)
- 小兒急腹癥觀察和護理
- 統編版七年級上學期期末考試語文試卷(含答案)
- 中國特色社會主義經濟建設
- 《長江電力財務分析》課件
- 2023年中國鐵路武漢局集團有限公司招聘大專(高職)學歷筆試真題
- 大學生職業(yè)規(guī)劃大賽成長賽道
評論
0/150
提交評論