版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
內(nèi)蒙古鄂爾多斯市伊金霍洛旗重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)猜題卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.平面上直線a、c與b相交(數(shù)據(jù)如圖),當(dāng)直線c繞點(diǎn)O旋轉(zhuǎn)某一角度時(shí)與a平行,則旋轉(zhuǎn)的最小度數(shù)是()A.60° B.50° C.40° D.30°2.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣23.一個(gè)幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.4.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且5.黃河是中華民族的象征,被譽(yù)為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢(shì)的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時(shí)作時(shí)間單位,則其年平均流量可用科學(xué)記數(shù)法表示為()A.6.06×104立方米/時(shí) B.3.136×106立方米/時(shí)C.3.636×106立方米/時(shí) D.36.36×105立方米/時(shí)6.如圖,數(shù)軸A、B上兩點(diǎn)分別對(duì)應(yīng)實(shí)數(shù)a、b,則下列結(jié)論正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.1a+7.1﹣的相反數(shù)是()A.1﹣ B.﹣1 C. D.﹣18.如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點(diǎn)B旋轉(zhuǎn)得到矩形A'BC'D,點(diǎn)A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為()A. B. C. D.9.如圖,點(diǎn)M是正方形ABCD邊CD上一點(diǎn),連接MM,作DE⊥AM于點(diǎn)E,BF⊥AM于點(diǎn)F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.10.如圖,某地修建高速公路,要從A地向B地修一條隧道(點(diǎn)A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機(jī)從A地出發(fā),垂直上升800米到達(dá)C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小邊的長是2cm,則它的最大邊的長是_____cm.12.計(jì)算=________.13.關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)k的取值范圍是_____.14.如圖△EDB由△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)而來,D點(diǎn)落在AC上,DE交AB于點(diǎn)F,若AB=AC,DB=BF,則AF與BF的比值為_____.15.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用16.已知⊙O半徑為1,A、B在⊙O上,且,則AB所對(duì)的圓周角為__o.三、解答題(共8題,共72分)17.(8分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數(shù)軸上表示出來.18.(8分)某市舉行“傳承好家風(fēng)”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了它們的成績,并繪制了如圖不完整的兩幅統(tǒng)計(jì)圖表.征文比賽成績頻數(shù)分布表分?jǐn)?shù)段頻數(shù)頻率60≤m<70380.3870≤m<80a0.3280≤m<90bc90≤m≤100100.1合計(jì)1請(qǐng)根據(jù)以上信息,解決下列問題:(1)征文比賽成績頻數(shù)分布表中c的值是;(2)補(bǔ)全征文比賽成績頻數(shù)分布直方圖;(3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).19.(8分)如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,的半徑為,P為上一動(dòng)點(diǎn).點(diǎn)B,C的坐標(biāo)分別為______,______;是否存在點(diǎn)P,使得為直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;連接PB,若E為PB的中點(diǎn),連接OE,則OE的最大值______.20.(8分)如圖,已知點(diǎn)D在△ABC的外部,AD∥BC,點(diǎn)E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點(diǎn)F,如果∠AFE=∠D,求證:.21.(8分)如圖,某中學(xué)數(shù)學(xué)課外學(xué)習(xí)小組想測量教學(xué)樓的高度,組員小方在處仰望教學(xué)樓頂端處,測得,小方接著向教學(xué)樓方向前進(jìn)到處,測得,已知,,.(1)求教學(xué)樓的高度;(2)求的值.22.(10分)為保護(hù)環(huán)境,我市公交公司計(jì)劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.求購買A型和B型公交車每輛各需多少萬元?預(yù)計(jì)在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?在(2)的條件下,哪種購車方案總費(fèi)用最少?最少總費(fèi)用是多少萬元?23.(12分)已知:如圖.D是的邊上一點(diǎn),,交于點(diǎn)M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.24.為了解某校學(xué)生的課余興趣愛好情況,某調(diào)查小組設(shè)計(jì)了“閱讀”、“打球”、“書法”和“舞蹈”四個(gè)選項(xiàng),用隨機(jī)抽樣的方法調(diào)查了該校部分學(xué)生的課余興趣愛好情況(每個(gè)學(xué)生必須選一項(xiàng)且只能選一項(xiàng)),并根據(jù)調(diào)查結(jié)果繪制了如圖統(tǒng)計(jì)圖:根據(jù)統(tǒng)計(jì)圖所提供的倍息,解答下列問題:(1)本次抽樣調(diào)查中的學(xué)生人數(shù)是多少人;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)若該校共有2000名學(xué)生,請(qǐng)根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校課余興趣愛好為“打球”的學(xué)生人數(shù);(4)現(xiàn)有愛好舞蹈的兩名男生兩名女生想?yún)⒓游璧干纾荒苓x兩名學(xué)生,請(qǐng)你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
先根據(jù)平角的定義求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點(diǎn)睛】本題考查的是平行線的性質(zhì),用到的知識(shí)點(diǎn)為:兩直線平行,同旁內(nèi)角互補(bǔ).2、C【解析】
方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程來求解.【詳解】方程變形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故選C.【點(diǎn)睛】考查了解一元二次方程﹣因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.3、D【解析】試題分析:由主視圖和左視圖可得此幾何體上面為臺(tái),下面為柱體,由俯視圖為圓環(huán)可得幾何體為.故選D.考點(diǎn):由三視圖判斷幾何體.視頻4、D【解析】
根據(jù)二次根式和分式有意義的條件計(jì)算即可.【詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【點(diǎn)睛】二次根式和分式有意義的條件是本題的考點(diǎn),二次根式有意義的條件是被開方數(shù)大于等于0,分式有意義的條件是分母不為0.5、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】1010×360×24=3.636×106立方米/時(shí),故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.6、C【解析】
本題要先觀察a,b在數(shù)軸上的位置,得b<-1<0<a<1,然后對(duì)四個(gè)選項(xiàng)逐一分析.【詳解】A、因?yàn)閎<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項(xiàng)A錯(cuò)誤;B、因?yàn)閎<0<a,所以ab<0,故選項(xiàng)B錯(cuò)誤;C、因?yàn)閎<-1<0<a<1,所以1a+1D、因?yàn)閎<-1<0<a<1,所以1a-1故選C.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸的對(duì)應(yīng)關(guān)系,數(shù)軸上右邊的數(shù)總是大于左邊的數(shù).7、B【解析】
根據(jù)相反數(shù)的的定義解答即可.【詳解】根據(jù)a的相反數(shù)為-a即可得,1﹣的相反數(shù)是﹣1.故選B.【點(diǎn)睛】本題考查了相反數(shù)的定義,熟知相反數(shù)的定義是解決問題的關(guān)鍵.8、A【解析】
本題首先利用A點(diǎn)恰好落在邊CD上,可以求出A′C=BC′=1,又因?yàn)锳′B=可以得出△A′BC為等腰直角三角形,即可以得出∠ABA′、∠DBD′的大小,然后將陰影部分利用切割法分為兩個(gè)部分來求,即面積ADA′和面積DA′D′【詳解】先連接BD,首先求得正方形ABCD的面積為,由分析可以求出∠ABA′=∠DBD′=45°,即可以求得扇形ABA′的面積為,扇形BDD′的面積為,面積ADA′=面積ABCD-面積A′BC-扇形面積ABA′=;面積DA′D′=扇形面積BDD′-面積DBA′-面積BA′D′=,陰影部分面積=面積DA′D′+面積ADA′=【點(diǎn)睛】熟練掌握面積的切割法和一些基本圖形的面積的求法是本題解題的關(guān)鍵.9、B【解析】
首先證明△ABF≌△DEA得到BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計(jì)算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點(diǎn)E,BF⊥AM于點(diǎn)F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設(shè)AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點(diǎn)睛】本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個(gè)角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).會(huì)運(yùn)用全等三角形的知識(shí)解決線段相等的問題.也考查了解直角三角形.10、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點(diǎn)睛】本題考查解直角三角形的應(yīng)用﹣仰角俯角問題,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1.【解析】
根據(jù)在△ABC中,∠A:∠B:∠C=1:2:3,三角形內(nèi)角和等于180°可得∠A,∠B,∠C的度數(shù),它的最小邊的長是2cm,從而可以求得最大邊的長.【詳解】∵在△ABC中,∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180∴∠A=30∵最小邊的長是2cm,∴a=2.∴c=2a=1cm.故答案為:1.【點(diǎn)睛】考查含30度角的直角三角形的性質(zhì),掌握30度角所對(duì)的直角邊等于斜邊的一半是解題的關(guān)鍵.12、1【解析】試題解析:3-2=1.13、k>【解析】
由方程根的情況,根據(jù)根的判別式可得到關(guān)于k的不等式,則可求得k的取值范圍.【詳解】∵關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個(gè)不相等的實(shí)根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>,故答案為k>.【點(diǎn)睛】本題主要考查根的判別式,熟練掌握一元二次方程根的個(gè)數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.14、5【解析】
先利用旋轉(zhuǎn)的性質(zhì)得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和定理證明∠ABD=∠A,則BD=AD,然后證明△BDC∽△ABC,則利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF與BF的比值.【詳解】∵如圖△EDB由△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)而來,D點(diǎn)落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF?AF-BF2=0,∴AF=﹣1+52BF,即AF與BF的比值為【點(diǎn)睛】本題主要考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、相似三角形的性質(zhì),熟練掌握這些知識(shí)點(diǎn)并靈活運(yùn)用是解題的關(guān)鍵.15、1【解析】
根據(jù)向量的三角形法則表示出CB,再根據(jù)BC、AD的關(guān)系解答.【詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【點(diǎn)睛】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵.16、45o或135o【解析】試題解析:如圖所示,∵OC⊥AB,∴C為AB的中點(diǎn),即在Rt△AOC中,OA=1,根據(jù)勾股定理得:即OC=AC,∴△AOC為等腰直角三角形,同理∵∠AOB與∠ADB都對(duì),∵大角則弦AB所對(duì)的圓周角為或故答案為或三、解答題(共8題,共72分)17、(1)4﹣5;﹣<x≤2,在數(shù)軸上表示見解析【解析】
(1)此題涉及乘方、特殊角的三角函數(shù)、負(fù)整數(shù)指數(shù)冪和二次根式的化簡,首先針對(duì)各知識(shí)點(diǎn)進(jìn)行計(jì)算,再計(jì)算實(shí)數(shù)的加減即可;(2)首先解出兩個(gè)不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集.【詳解】解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;(2),解①得:x>﹣,解②得:x≤2,不等式組的解集為:﹣<x≤2,在數(shù)軸上表示為:.【點(diǎn)睛】此題主要考查了解一元一次不等式組,以實(shí)數(shù)的運(yùn)算,關(guān)鍵是正確確定兩個(gè)不等式的解集,掌握特殊角的三角函數(shù)值.18、(1)0.2;(2)答案見解析;(3)300【解析】
第一問,根據(jù)頻率的和為1,求出c的值;第二問,先用分?jǐn)?shù)段是90到100的頻數(shù)和頻率求出總的樣本數(shù)量,然后再乘以頻率分別求出a和b的值,再畫出頻數(shù)分布直方圖;第三問用全市征文的總篇數(shù)乘以80分以上的頻率得到全市80分以上的征文的篇數(shù).【詳解】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案為0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,補(bǔ)全征文比賽成績頻數(shù)分布直方圖:(3)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù)為:1000×(0.2+0.1)=300(篇).【點(diǎn)睛】掌握有關(guān)頻率和頻數(shù)的相關(guān)概念和計(jì)算,是解答本題的關(guān)鍵.19、(1)B(1,0),C(0,﹣4);(2)點(diǎn)P的坐標(biāo)為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點(diǎn)坐標(biāo),令x=0可求得C點(diǎn)坐標(biāo);(2)①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質(zhì)得到=2,設(shè)OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標(biāo),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當(dāng)BC⊥PC時(shí),△PBC為直角三角形,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當(dāng)AP最大時(shí),OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點(diǎn)P,使得△PBC為直角三角形,分兩種情況:①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設(shè)OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當(dāng)BC⊥PC時(shí),△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點(diǎn)P的坐標(biāo)為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當(dāng)AP最大時(shí),OE的值最大,∵當(dāng)P在AC的延長線上時(shí),AP的值最大,最大值=,∴OE的最大值為.故答案為.20、見解析【解析】
(1)欲證明∠BAC=∠AED,只要證明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再證明四邊形ADEF是平行四邊形,推出DE=AF,即可解決問題;【詳解】證明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四邊形ADEF是平行四邊形,∴DE=AF,∴.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.21、(1)12m;(2)【解析】
(1)利用即可求解;(2)通過三角形外角的性質(zhì)得出,則,設(shè),則,在中利用勾股定理即可求出BC,BD的長度,最后利用即可求解.【詳解】解:(1)在中,,答:教學(xué)樓的高度為;(2)設(shè),則,故,解得:,則故.【點(diǎn)睛】本題主要考查解直角三角形,掌握勾股定理及正切,余弦的定義是解題的關(guān)鍵.22、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;(3)購買A型公交車8輛,B型公交車2輛費(fèi)用最少,最少費(fèi)用為1100萬元.【解析】
詳解:(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得x+2y=解得x=答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由題意得100a+15010-a解得:6≤a≤8,因?yàn)閍是整數(shù),所以a=6,7,8;則(10-a)=4,3,2;三種方案:①購買A型公交車6輛,B型公交車4輛;②購買A型公交車7輛,B型公交車3輛;③購買A型公交車8輛,B型公交車2輛.(3)①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;故購買A型公交車8輛,則B型公交車2輛費(fèi)用最少,最少總費(fèi)用為1100萬元.【點(diǎn)睛】此題考查二元一次方程組和一元一次不等式組的應(yīng)用,注意理解題意,找出題目蘊(yùn)含的數(shù)量關(guān)系,列出方程組或不等式組解決問題.23、(1)證明見解析;(2)四邊形ADCN是矩形,理由見解析.【解析】
(1)根據(jù)平行得出∠DAM=∠NCM,根據(jù)ASA推出△AMD≌△CMN,得出AD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 石材供應(yīng)購銷合同
- 食品材料采購合同書
- 酒駕者自律書
- 智能化濕地監(jiān)控系統(tǒng)招標(biāo)
- 花卉育苗合作方案
- 巖棉板采購合同示例
- 青春守護(hù)堅(jiān)守底線抵制早戀
- 代理合同補(bǔ)充協(xié)議要點(diǎn)
- 簡易分包合同勞務(wù)部分
- 催辦房屋買賣合同辦理事宜
- 腎破裂保守治療護(hù)理查房
- 2024年避孕藥具計(jì)劃總結(jié)
- 新聞攝影課件
- 德能勤績考核表
- 收納箱注塑模具設(shè)計(jì)說明書
- Python數(shù)據(jù)科學(xué)方法與實(shí)踐(山東聯(lián)盟)智慧樹知到課后章節(jié)答案2023年下山東師范大學(xué)
- 河南省鄭州市管城區(qū)卷2023-2024學(xué)年數(shù)學(xué)四年級(jí)第一學(xué)期期末聯(lián)考試題含答案
- 班主任考核細(xì)則評(píng)分表
- 2023教科版二年級(jí)上冊(cè)科學(xué)課堂作業(yè)本參考答案
- 乘坐飛機(jī)申請(qǐng)單
- 譯林牛津版九年級(jí)英語上冊(cè)期末復(fù)習(xí)課件全套一
評(píng)論
0/150
提交評(píng)論