




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
SharingdetailofImageNetClassificationwithDeepCNNs林木得OutlineOverviewGoalDatasetModelMotivationArchitectureResultsPartIBasicProblemsActivationFunctionLossFunctionLearningMethodPartIIModelFeaturesReLUNonlinearityTrainingonMultipleGPUsLocalResponseNormalizationOverlappoolingReduceOverfittingDataAugmentationDropoutPartIIIMainphasesPreprocessInitializationStochasticgradientdescentTestReferencesOverviewGoalDatasetModelResultsGoalImageclassificationClassify
theImageNetLSVRC-2010contestimagesinto1000differentclasses.DataSetroughly1.2milliontrainingimages50,000validationimages150,000testingimagesModelMotivation利用自然圖像性質(zhì)
stationarity
of
statistics
locality
of
pixel
independencies模擬神經(jīng)網(wǎng)絡(luò)工作機(jī)理
receptivefieldModelArchitectureResultsTesterrorinILSVR-2010testsetResultsTesterrorinILSVR-2012testsetsPartIBasicProblemsActivationFunctionLostFunctionLearningMethodActivationFunctionForalllayersexceptoutputlayer: RectifiedLinearUnit(ReLU)TobeconfirmedForoutputlayer:
ReLUandLossFunctionmultinomiallogisticregressionobjective:
tobeconfirmed
LearningMethodGradientDescentTobemorespecific,StochasticGradientDescentwithbatchof128images.PartIIModelFeaturesReLUNonlinearityTrainingonMultipleGPUsLocalResponseNormalizationOverlappoolingReduceOverfittingDataAugmentationDropoutReLUNonlinearityStandardactivationfunction:f(x)=tanh(x)orf(x)=(1+ex)-1
Newinthispaper:
RectifiedLinearUnit(ReLU):
f(x)=max(0,x)
CIFAR-10PerformancecompariseTrainingonMultipleGPUsputshalfofthekernels(orneurons)oneachGPUtheGPUscommunicateonlyincertainlayers.readfromandwritetooneanother’smemorydirectly,Withouthostmachinememoryreducesourtop-1andtop-5errorratesby1.7%and1.2%LocalResponseNormalizationOnvalidationset
k=2,n=5,alpha=10-4,andbeta=0.75
In
realneurons,
橫向抑制reducesourtop-1andtop-5errorratesby1.4%and1.2%,respectively.OverlappoolingTraditionally,
non-overlappoolingNewinthispaper:Overlappoolings=2andz=3.educesthetop-1andtop-5errorratesby0.4%and0.3%,respectivelyWhypooling:
1,reducenumberofneuron 2,translateinvarianceOverallarchitectureOverallArchitectureNeuronineachlayers:224x224x3,55x55x96,27x27x256,13x13x394,13x13x394,13x13x256,4096,4096,1000.Almost:650,000neuronsParameterineachlayers:11x11x3x96,5x5x48x256,3x3x256x384,3x3x192x384,3x3x192x256,43264x4096,4096x4096,4096x1000Almost:60millionparametersReduceOverfittingReduceoverfittingisthemostimportantproblemforthismodelDataArgumentationgeneratingimagetranslationsandhorizontalreflec-tions.Train:Afactorof2048moreimagesTest:5x2imagesaveragepredictalteringtheintensitiesoftheRGBchannelsintrainingimages.toeachRGBimagepixelIxy=[IR,IG,IB]Tweaddthefollowingquantity:xyxyxyreducesthetop-1errorratebyover1%.
ReduceOverfittingDropoutMotivation:
Tooexpensivetocombinemanyabovemodelsthattakes5daystotrain
ReduceOverfittingDropoutHOW:
train:settingtozerotheoutputofeachhiddenneuronwithprobability0.5inthefirst2fully-connectlayers.
test:usealltheneuronsbutmultiplytheiroutputsby0.5ReduceOverfittingDropoutCost:
roughlydoublesthenumberofiterationsrequiredtoconverge
PartIIIMainphasesPreprocessInitializationStochasticgradientdescentTestPreprocessdown-sampledtheimagestoafixedresolutionof256x256rescaledtheimagesuchthattheshortersidewasoflength256croppedoutthecentral256x256patchfromtheresultingimagesubtractingthemeanactivityoverthetrainingsetfromeachpixel.Thustrainnetworkonthe(centered)rawRGBvaluesofthepixels.Initializationinitializedtheweightsineachlayerfromazero-meanGaussiandistributionwithstandardde-viation0.01.initializedtheneuronbiasesinthesecond,fourth,andfifth
convolutionallayers,aswellasinthefully-connectedhiddenlayers,withtheconstant1
initializedtheneuronbiasesintheremaininglayerswiththeconstant0learningratewasinitializedat0.01Stochasticgradientdescentwithabatchsizeof128examplesdecayof0.0005Updaterulesdividethelearningrateby10whenthevalidationerrorratestoppedimprovingwiththecurrentlearningrate.learningratereducedthreetimespriortotermination90cyclesthrough1.2millionimages
,took5to6daysTestAttesttime,thenetworkmakesapredictionbyextracting5x2224x224patchesaswellastheirhorizontalreflections(hencetenpatchesinall),andaveragingthepredictionsmadebythenetwork’ssoftmaxlayeronthetenpatches.Attesttime,weusealltheneuronsbutmultiplytheiroutputsby0.5
inthefirsttwofully-connectedlayers.References1,ImageNetClassifi
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智慧農(nóng)業(yè)園區(qū)開發(fā)與運(yùn)營合作協(xié)議
- 事業(yè)單位工會活動方案
- 稅務(wù)顧問服務(wù)協(xié)議書
- 云計(jì)算服務(wù)平臺建設(shè)合同
- 樁基工程施工專業(yè)分包規(guī)定合同
- 合同付款補(bǔ)充協(xié)議書
- 煙草產(chǎn)品購銷合同
- 公司商鋪?zhàn)赓U合同書
- 獨(dú)家代理銷售合同
- 辦公效率提升解決方案實(shí)踐
- 男方欠女方錢離婚協(xié)議書范本
- 《積極心理學(xué)(第3版)》 課件 第1章 主觀幸福感
- 2024-2030年中國匹克球市場前景預(yù)判與未來發(fā)展形勢分析研究報告
- 小學(xué)二年級新學(xué)期開學(xué)學(xué)生家長會承上啟下的二年級模板
- LY/T 3370-2024草原術(shù)語及分類
- 2024軌道交通絕緣配合第1部分:基本要求電工電子設(shè)備的電氣間隙和爬電距離
- 《田間試驗(yàn)統(tǒng)計(jì)》課件-項(xiàng)目二 田間試驗(yàn)設(shè)計(jì)與實(shí)施
- 一年級下冊《讀讀童謠和兒歌》試題及答案共10套
- CHZ 3002-2010 無人機(jī)航攝系統(tǒng)技術(shù)要求(正式版)
- 免拆底模鋼筋桁架樓承板圖集
- 尋夢環(huán)游記(Coco)中英文臺詞對照
評論
0/150
提交評論