版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省江陰市石莊中學(xué)2024年高三第二次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.2.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.3.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點對稱;②函數(shù)是周期函數(shù);③當(dāng)時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④4.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.965.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實數(shù)的取值范圍為()A. B. C. D.6.已知為銳角,且,則等于()A. B. C. D.7.在中,,則()A. B. C. D.8.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.39.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.10.設(shè),,是非零向量.若,則()A. B. C. D.11.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.2512.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)定義域為的函數(shù)滿足,則不等式的解集為__________.14.已知以x±2y=0為漸近線的雙曲線經(jīng)過點,則該雙曲線的標(biāo)準(zhǔn)方程為________.15.執(zhí)行右邊的程序框圖,輸出的的值為.16.如圖所示,點,B均在拋物線上,等腰直角的斜邊為BC,點C在x軸的正半軸上,則點B的坐標(biāo)是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C的離心率為且經(jīng)過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以O(shè)A、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.18.(12分)已知.(1)當(dāng)時,求不等式的解集;(2)若時不等式成立,求的取值范圍.19.(12分)已知函數(shù).(Ⅰ)當(dāng)時,討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對任意的和恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù)(1)解不等式;(2)若均為正實數(shù),且滿足,為的最小值,求證:.21.(12分)已知橢圓:(),與軸負(fù)半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標(biāo).22.(10分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先根據(jù)向量坐標(biāo)運算求出和,進(jìn)而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標(biāo)運算,引入新定義,屬于簡單題目.2、C【解析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項進(jìn)行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.3、A【解析】
根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關(guān)于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當(dāng)時,,,,此時與無交點;當(dāng)時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導(dǎo)數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強,對于學(xué)生的分析和推理能力有較高要求.4、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場比賽時,共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計數(shù)原理、排列數(shù)與組合數(shù)公式等知識,屬于基礎(chǔ)題.5、B【解析】
函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時的值,然后根據(jù)變化時,函數(shù)的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠(yuǎn)在的上方,設(shè)與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.6、C【解析】
由可得,再利用計算即可.【詳解】因為,,所以,所以.故選:C.【點睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運用的能力,屬于基礎(chǔ)題.7、A【解析】
先根據(jù)得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.8、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問題的能力,難度較易.9、B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.10、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標(biāo)運算、數(shù)量積及平面幾何知識,又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運算,此法對解含垂直關(guān)系的問題往往有很好效果.11、D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設(shè)首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應(yīng)用,考查求前n項和的最值問題,同時還考查了余弦定理的應(yīng)用.12、A【解析】
由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)條件構(gòu)造函數(shù)F(x),求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.【詳解】設(shè)F(x),則F′(x),∵,∴F′(x)>0,即函數(shù)F(x)在定義域上單調(diào)遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點睛】本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)條件構(gòu)造函數(shù)是解決本題的關(guān)鍵.14、【解析】
設(shè)雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設(shè)雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據(jù)漸近線求雙曲線,設(shè)雙曲線方程為是解題的關(guān)鍵.15、【解析】初始條件成立方;運行第一次:成立;運行第二次:不成立;輸出的值:結(jié)束所以答案應(yīng)填:考點:1、程序框圖;2、定積分.16、【解析】
設(shè)出兩點的坐標(biāo),結(jié)合拋物線方程、兩條直線垂直的條件以及兩點間的距離公式列方程,解方程求得的坐標(biāo).【詳解】設(shè),由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點睛】本題考查拋物線的方程和運用,考查方程思想和運算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)橢圓的離心率、橢圓上點的坐標(biāo)以及列方程,由此求得,進(jìn)而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出韋達(dá)定理.根據(jù)平行四邊形的性質(zhì)以及向量加法的幾何意義得到,由此求得點的坐標(biāo),將的坐標(biāo)代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【詳解】(1)由橢圓的離心率為,點在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設(shè)直線的斜率為,則直線的方程為,設(shè),由消去得,所以,由已知得,所以,由于點都在橢圓上,所以,展開有,又,所以,經(jīng)檢驗滿足,故直線的方程為.【點睛】本小題主要考查根據(jù)橢圓的離心率和橢圓上一點的坐標(biāo)求橢圓方程,考查直線和橢圓的位置關(guān)系,考查運算求解能力,屬于中檔題.18、(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個絕對值符號可以去掉,不等式可以化為時,分情況討論即可求得結(jié)果.詳解:(1)當(dāng)時,,即故不等式的解集為.(2)當(dāng)時成立等價于當(dāng)時成立.若,則當(dāng)時;若,的解集為,所以,故.綜上,的取值范圍為.點睛:該題考查的是有關(guān)絕對值不等式的解法,以及含參的絕對值的式子在某個區(qū)間上恒成立求參數(shù)的取值范圍的問題,在解題的過程中,需要會用零點分段法將其化為分段函數(shù),從而將不等式轉(zhuǎn)化為多個不等式組來解決,關(guān)于第二問求參數(shù)的取值范圍時,可以應(yīng)用題中所給的自變量的范圍,去掉一個絕對值符號,之后進(jìn)行分類討論,求得結(jié)果.19、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)首先求得導(dǎo)函數(shù),然后結(jié)合導(dǎo)函數(shù)的解析式分類討論函數(shù)的單調(diào)性即可;(Ⅱ)將原問題進(jìn)行等價轉(zhuǎn)化為,,恒成立,然后構(gòu)造新函數(shù),結(jié)合函數(shù)的性質(zhì)確定實數(shù)的取值范圍即可.【詳解】解:(Ⅰ)當(dāng)時,,當(dāng)時,在上恒成立,函數(shù)在上單調(diào)遞減;當(dāng)時,由得:;由得:.∴當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間是,無單調(diào)遞增區(qū)間:當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴當(dāng)時,,即又∵,∴實數(shù)的取值范圍是:.【點睛】本題主要考查導(dǎo)函數(shù)研究函數(shù)的單調(diào)性和恒成立問題,考查分類討論的數(shù)學(xué)思想,等價轉(zhuǎn)化的數(shù)學(xué)思想等知識,屬于中等題.20、(1)或(2)證明見解析【解析】
(1)將寫成分段函數(shù)的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,證得不等式成立.【詳解】(1)當(dāng)時,恒成立,解得;當(dāng)時,由,解得;當(dāng)時,由解得所以的解集為或(2)由(1)可求得最小值為,即因為均為正實數(shù),且(當(dāng)且僅當(dāng)時,取“”)所以,即.【點睛】本小題主要考查絕對值不等式的求法,考查利用基本不等式證明不等式,屬于中檔題.21、(1)(2)證明見解析;定點坐標(biāo)為【解析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時滿足∴∴直線恒過定點【點睛】涉及橢圓的弦長、中點、距離等相關(guān)問題時,一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.22、(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進(jìn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥物治療周期性精神病-洞察分析
- 虛擬世界安全標(biāo)準(zhǔn)制定-洞察分析
- 藝術(shù)品鑒定技術(shù)-洞察分析
- 藥物中毒救治新技術(shù)研究-洞察分析
- 微服務(wù)容器化與JavaWeb性能提升研究-洞察分析
- 碧根果行業(yè)市場發(fā)展現(xiàn)狀及趨勢與投資分析研究報告
- 可更換式曝光盒行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 氟塑料電線電纜項目可行性研究報告
- 2025礦產(chǎn)品購銷合同樣本
- 2025軟件開發(fā)購銷合同協(xié)議
- prs7910數(shù)據(jù)網(wǎng)關(guān)機技術(shù)使用說明書
- 中南大學(xué)《工程制圖》習(xí)題集期末自測題答案解析
- 脂溢性皮炎與頭部脂溢性皮炎攻略
- 丙烯精制工段工藝畢業(yè)設(shè)計
- 全國英語等級考試三級全真模擬試題三
- 國開專科《人文英語 2》機考題庫
- 項目采購招標(biāo)方案
- 客戶服務(wù)技巧-學(xué)會委婉說不
- GB/T 40169-2021超高分子量聚乙烯(PE-UHMW)和高密度聚乙烯(PE-HD)模塑板材
- GB/T 31579-2015糧油檢驗芝麻油中芝麻素和芝麻林素的測定高效液相色譜法
- GB/T 2007.3-1987散裝礦產(chǎn)品取樣、制樣通則評定品質(zhì)波動試驗方法
評論
0/150
提交評論