2024屆遼寧省葫蘆島市龍港區(qū)市級名校中考四模數(shù)學(xué)試題含解析_第1頁
2024屆遼寧省葫蘆島市龍港區(qū)市級名校中考四模數(shù)學(xué)試題含解析_第2頁
2024屆遼寧省葫蘆島市龍港區(qū)市級名校中考四模數(shù)學(xué)試題含解析_第3頁
2024屆遼寧省葫蘆島市龍港區(qū)市級名校中考四模數(shù)學(xué)試題含解析_第4頁
2024屆遼寧省葫蘆島市龍港區(qū)市級名校中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆遼寧省葫蘆島市龍港區(qū)市級名校中考四模數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.2.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°3.這個數(shù)是()A.整數(shù) B.分數(shù) C.有理數(shù) D.無理數(shù)4.下列命題是真命題的是()A.一組對邊平行,另一組對邊相等的四邊形是平行四邊形B.兩條對角線相等的四邊形是平行四邊形C.兩組對邊分別相等的四邊形是平行四邊形D.平行四邊形既是中心對稱圖形,又是軸對稱圖形5.如圖,在中,,,,則等于()A. B. C. D.6.用6個相同的小正方體搭成一個幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.7.如圖1,E為矩形ABCD邊AD上一點,點P從點B沿折線BE﹣ED﹣DC運動到點C時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是()A.AE=6cm B.C.當(dāng)0<t≤10時, D.當(dāng)t=12s時,△PBQ是等腰三角形8.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm9.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,2)且與x軸交點的橫坐標分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有()A.1個 B.2個 C.3個 D.4個10.若點P(﹣3,y1)和點Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,則y1與y2的大小關(guān)系為()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2二、填空題(本大題共6個小題,每小題3分,共18分)11.《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步而見木?”用今天的話說,大意是:如圖,是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門位于的中點,南門位于的中點,出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點在直線上)?請你計算的長為__________步.12.因式分解:16a3﹣4a=_____.13.若一個多邊形的每一個外角都等于40°,則這個多邊形的內(nèi)角和是_____.14.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=______.15.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.16.已知關(guān)于x的方程x2+(1-m)x+m三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.(1)求拋物線的解析式;(2)當(dāng)PO+PC的值最小時,求點P的坐標;(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.18.(8分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大??;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.19.(8分)今年5月,某大型商業(yè)集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.評估成績n(分)

評定等級

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問題:(1)求m的值;(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大??;(結(jié)果用度、分、秒表示)(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經(jīng)驗,求其中至少有一家是A等級的概率.20.(8分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數(shù)量關(guān)系為:.(探究)如圖1,當(dāng)點M在BC延長線上時,h1、h1、h之間有怎樣的數(shù)量關(guān)系式?并說明理由.(應(yīng)用)如圖3,在平面直角坐標系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結(jié)論求出點M的坐標.21.(8分)如圖,在邊長為1個單位長度的小正方形組成的12×12網(wǎng)格中建立平面直角坐標系,格點△ABC(頂點是網(wǎng)格線的交點)的坐標分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)將△ABC繞點O逆時針旋轉(zhuǎn)90°得到△DEF,畫出△DEF;(2)以O(shè)為位似中心,將△ABC放大為原來的2倍,在網(wǎng)格內(nèi)畫出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點,這次變換后的對應(yīng)點P1的坐標為.22.(10分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.23.(12分)如圖,AB是⊙O的直徑,D為⊙O上一點,過弧BD上一點T作⊙O的切線TC,且TC⊥AD于點C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長.24.班級的課外活動,學(xué)生們都很積極.梁老師在某班對同學(xué)們進行了一次關(guān)于“我喜愛的體育項目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:(1)調(diào)查了________名學(xué)生;(2)補全條形統(tǒng)計圖;(3)在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為________;(4)學(xué)校將舉辦運動會,該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

先求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關(guān)鍵.2、B【解析】

根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質(zhì)即可解答【詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內(nèi)角和,平行線的性質(zhì),解題關(guān)鍵在于利用平行線的性質(zhì)得到角相等3、D【解析】

由于圓周率π是一個無限不循環(huán)的小數(shù),由此即可求解.【詳解】解:實數(shù)π是一個無限不循環(huán)的小數(shù).所以是無理數(shù).

故選D.【點睛】本題主要考查無理數(shù)的概念,π是常見的一種無理數(shù)的形式,比較簡單.4、C【解析】

根據(jù)平行四邊形的五種判定定理(平行四邊形的判定方法:①兩組對邊分別平行的四邊形;②兩組對角分別相等的四邊形;③兩組對邊分別相等的四邊形;④一組對邊平行且相等的四邊形;⑤對角線互相平分的四邊形)和平行四邊形的性質(zhì)進行判斷.【詳解】A、一組對邊平行,另一組對邊相等的四邊形不是平行四邊形;故本選項錯誤;B、兩條對角線互相平分的四邊形是平行四邊形.故本選項錯誤;C、兩組對邊分別相等的四邊形是平行四邊形.故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形.故本選項錯誤;故選:C.【點睛】考查了平行四邊形的判定與性質(zhì).平行四邊形的判定方法共有五種,應(yīng)用時要認真領(lǐng)會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.5、A【解析】分析:先根據(jù)勾股定理求得BC=6,再由正弦函數(shù)的定義求解可得.詳解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故選:A.點睛:本題主要考查銳角三角函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理及正弦函數(shù)的定義.6、D【解析】分析:根據(jù)主視圖和俯視圖之間的關(guān)系可以得出答案.詳解:∵主視圖和俯視圖的長要相等,∴只有D選項中的長和俯視圖不相等,故選D.點睛:本題主要考查的就是三視圖的畫法,屬于基礎(chǔ)題型.三視圖的畫法為:主視圖和俯視圖的長要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.7、D【解析】(1)結(jié)論A正確,理由如下:解析函數(shù)圖象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)結(jié)論B正確,理由如下:如圖,連接EC,過點E作EF⊥BC于點F,由函數(shù)圖象可知,BC=BE=10cm,,∴EF=1.∴.(3)結(jié)論C正確,理由如下:如圖,過點P作PG⊥BQ于點G,∵BQ=BP=t,∴.(4)結(jié)論D錯誤,理由如下:當(dāng)t=12s時,點Q與點C重合,點P運動到ED的中點,設(shè)為N,如圖,連接NB,NC.此時AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此時△PBQ不是等腰三角形.故選D.8、C【解析】

利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【點睛】此題考查了圓錐的計算,用到的知識點為:圓錐側(cè)面展開圖的弧長=;圓錐的底面周長等于側(cè)面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.9、D【解析】由拋物線的開口向下知a<0,與y軸的交點為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個交點,∴?4ac>0,當(dāng)x=2時,y=4a+2b+c<0,當(dāng)x=1時,a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個相加得到6a<?6,∴a<?1.故選D.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點個數(shù)決定根的判別式的符號,注意二次函數(shù)圖象上特殊點的特點.10、A【解析】

分別將點P(﹣3,y1)和點Q(﹣1,y2)代入正比例函數(shù)y=﹣k2x,求出y1與y2的值比較大小即可.【詳解】∵點P(﹣3,y1)和點Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案選A.【點睛】本題考查了正比例函數(shù),解題的關(guān)鍵是熟練的掌握正比例函數(shù)的知識點.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:由正方形的性質(zhì)得到∠EDG=90°,從而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性質(zhì)得到CK:KD=HD:HA,求解即可得到結(jié)論.詳解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案為:.點睛:本題考查了相似三角形的應(yīng)用.解題的關(guān)鍵是證明△CKD∽△DHA.12、4a(2a+1)(2a﹣1)【解析】

首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關(guān)鍵是熟練掌握因式分解的方法.13、【解析】

根據(jù)任何多邊形的外角和都是360度,先利用360°÷40°求出多邊形的邊數(shù),再根據(jù)多邊形的內(nèi)角和公式(n-2)?180°計算即可求解.【詳解】解:多邊形的邊數(shù)是:360°÷40°=9,

則內(nèi)角和是:(9-2)?180°=1260°.

故答案為1260°.【點睛】本題考查正多邊形的外角與邊數(shù)的關(guān)系,求出多邊形的邊數(shù)是解題的關(guān)鍵.14、3﹣【解析】

首先設(shè)點B的橫坐標,由點B在拋物線y1=x2(x≥0)上,得出點B的坐標,再由平行,得出A和C的坐標,然后由CD平行于y軸,得出D的坐標,再由DE∥AC,得出E的坐標,即可得出DE和AB,進而得解.【詳解】設(shè)點B的橫坐標為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【點睛】此題主要考查拋物線中的坐標求解,關(guān)鍵是利用平行的性質(zhì).15、1【解析】

根據(jù)△ABC中DE垂直平分AC,可求出AE=CE,再根據(jù)等腰三角形的性質(zhì)求出∠ACE=∠A=30°,再根據(jù)∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.16、1.【解析】試題分析:∵關(guān)于x的方程x2∴Δ=(1-m)∴m的最大整數(shù)值為1.考點:1.一元二次方程根的判別式;2.解一元一次不等式.三、解答題(共8題,共72分)17、(1)y=x2+3x;(2)當(dāng)PO+PC的值最小時,點P的坐標為(2,);(3)存在,具體見解析.【解析】

(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數(shù)法可求得拋物線解析式;(2)D與P重合時有最小值,求出點D的坐標即可;(3)存在,分別根據(jù)①AC為對角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過O、A兩點,且頂點在BC邊上,∴拋物線頂點坐標為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當(dāng)點P與點D重合時,PA+PC=AC;當(dāng)點P不與點D重合時,PA+PC>AC;∴當(dāng)點P與點D重合時,PO+PC的值最小,設(shè)直線AC的解析式為y=kx+b,根據(jù)題意,得解得∴直線AC的解析式為,當(dāng)x=2時,,∴當(dāng)PO+PC的值最小時,點P的坐標為(2,);(3)存在.①AC為對角線,當(dāng)四邊形AQCP為平行四邊形,點Q為拋物線的頂點,即Q(2,3),則P(2,0);②AC為邊,當(dāng)四邊形AQPC為平行四邊形,點C向右平移2個單位得到P,則點A向右平移2個單位得到點Q,則Q點的橫坐標為6,當(dāng)x=6時,,此時Q(6,?9),則點A(4,0)向右平移2個單位,向下平移9個單位得到點Q,所以點C(0,3)向右平移2個單位,向下平移9個單位得到點P,則P(2,?6);當(dāng)四邊形APQC為平行四邊形,點A向左平移2個單位得到P,則點C向左平移2個單位得到點Q,則Q點的橫坐標為?2,當(dāng)x=?2時,,此時Q(?2,?9),則點C(0,3)向左平移2個單位,向下平移12個單位得到點Q,所以點A(4,0)向左平移2個單位,向下平移12個單位得到點P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點睛】二次函數(shù)的綜合應(yīng)用,涉及矩形的性質(zhì)、待定系數(shù)法、平行四邊形的性質(zhì)、方程思想及分類討論思想等知識.18、(1)∠D=32°;(2)①BE=;②【解析】

(Ⅰ)連接OC,CD為切線,根據(jù)切線的性質(zhì)可得∠OCD=90°,根據(jù)圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據(jù)直角三角形的性質(zhì)可得∠D的大小.(Ⅱ)①根據(jù)∠D=30°,得到∠DOC=60°,根據(jù)∠BAO=15°,可以得出∠AOB=150°,進而證明△OBC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得出根據(jù)圓周角定理得出根據(jù)含角的直角三角形的性質(zhì)即可求出BE的長;②根據(jù)四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進行計算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①連接OB,在Rt△OCD中,∵∠D=30°,∴∠DOC=60°,∵∠BAO=15°,∴∠OBA=15°,∴∠AOB=150°,∴∠OBC=150°﹣60°=90°,∴△OBC為等腰直角三角形,∴∵在Rt△CBE中,∴②作BH⊥OA于H,如圖,∵∠BOH=180°﹣∠AOB=30°,∴∴四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB【點睛】考查切線的性質(zhì),圓周角定理,等腰直角三角形的判定與性質(zhì),含角的等腰直角三角形的性質(zhì),三角形的面積公式等,題目比較典型,綜合性比較強,難度適中.19、(1)25;(2)8°48′;(3)56【解析】試題分析:(1)由C等級頻數(shù)為15除以C等級所占的百分比60%,即可求得m的值;(2)首先求得B等級的頻數(shù),繼而求得B等級所在扇形的圓心角的大??;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與其中至少有一家是A等級的情況,再利用概率公式求解即可求得答案.試題解析:(1)∵C等級頻數(shù)為15,占60%,∴m=15÷60%=25;(2)∵B等級頻數(shù)為:25﹣2﹣15﹣6=2,∴B等級所在扇形的圓心角的大小為:225(3)評估成績不少于80分的連鎖店中,有兩家等級為A,有兩家等級為B,畫樹狀圖得:∵共有12種等可能的結(jié)果,其中至少有一家是A等級的有10種情況,∴其中至少有一家是A等級的概率為:1012=5考點:頻數(shù)(率)分布表;扇形統(tǒng)計圖;列表法與樹狀圖法.20、【思考】h1+h1=h;【探究】h1-h(huán)1=h.理由見解析;【應(yīng)用】所求點M的坐標為(,1)或(-,4).【解析】

思考:根據(jù)等腰三角形的性質(zhì),把代數(shù)式化簡可得.探究:當(dāng)點M在BC延長線上時,連接,可得,化簡可得.應(yīng)用:先證明,△ABC為等腰三角形,即可運用上面得到的性質(zhì),再分點M在BC邊上和在CB延長線上兩種情況討論,第一種有1+My=OB,第二種為My-1=OB,解得的縱坐標,再分別代入的解析式即可求解.【詳解】思考即h1+h1=h.探究h1-h(huán)1=h.理由.連接,∵∴∴h1-h(huán)1=h.應(yīng)用在中,令x=0得y=3;令y=0得x=-4,則:A(-4,0),B(0,3)同理求得C(1,0),,又因為AC=5,所以AB=AC,即△ABC為等腰三角形.①當(dāng)點M在BC邊上時,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x+3中求得:,∴;②當(dāng)點M在CB延長線上時,由h1-h(huán)1=h得:My-1=OB,My=3+1=4,把它代入y=-3x+3中求得:,∴,綜上,所求點M的坐標為或.【點睛】本題結(jié)合三角形的面積和等腰三角形的性質(zhì)考查了新性質(zhì)的推理與證明,熟練掌握三角形的性質(zhì),結(jié)合圖形層層推進是解答的關(guān)鍵.21、(1)見解析;(2)見解析,(﹣2x,﹣2y).【解析】

(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點A、B、C的對應(yīng)點D、E、F,即可得到△DEF;(2)先根據(jù)位似中心的位置以及放大的倍數(shù),畫出原三角形各頂點的對應(yīng)頂點,再順次連接各頂點,得到△A1B1C1,根據(jù)△A1B1C1結(jié)合位似的性質(zhì)即可得P1的坐標.【詳解】(1)如圖所示,△DEF即為所求;(2)如圖所示,△A1B1C1即為所求,這次變換后的對應(yīng)點P1的坐標為(﹣2x,﹣2y),故答案為(﹣2x,﹣2y).【點睛】本題主要考查了位似變換與旋轉(zhuǎn)變換,解決問題的關(guān)鍵是先作出圖形各頂點的對應(yīng)頂點,再連接各頂點得到新的圖形.在畫位似圖形時需要注意,位似圖形的位似中心可能在兩個圖形之間,也可能在兩個圖形的同側(cè).22、(1)相等,理由見解析;(2)2;(3).【解析】

(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結(jié)論;

(2)構(gòu)造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;

(3)先構(gòu)造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【詳解】解:(1)BF=AE,理由:

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=∠D=90°,

∴∠BAE+∠DAE=90°,

∵AE⊥BF,

∴∠BAE+∠ABF=90°,

∴∠ABF=∠DAE,

在△ABF和△DAE中,∴△ABF≌△DAE,

∴BF=AE,(2)如圖2,

過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,

∴四邊形ABCM是平行四邊形,

∵∠ABC=90°,

∴?ABCM是矩形,

∵AB=BC,

∴矩形ABCM是正方形,

∴AB=BC=CM,

同(1)的方法得,△ABD≌△BCG,

∴CG=BD,

∵點D是BC中點,

∴BD=BC=CM,

∴CG=CM=AB,

∵AB∥CM,

∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,

∴AC=5,

∵點D是BC中點,

∴BD=BC=2,

過點A作AN∥BC,過點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論