山東省東營鄒平縣聯(lián)考2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
山東省東營鄒平縣聯(lián)考2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
山東省東營鄒平縣聯(lián)考2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
山東省東營鄒平縣聯(lián)考2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
山東省東營鄒平縣聯(lián)考2024年畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省東營鄒平縣聯(lián)考2024年畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算a?a2的結果是()A.a(chǎn)B.a(chǎn)2C.2a2D.a(chǎn)32.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數(shù)515x對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差3.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π4.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數(shù)法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣55.某校九年級(1)班學生畢業(yè)時,每個同學都將自己的相片向全班其他同學各送一張留作紀念,全班共送了1980張相片,如果全班有x名學生,根據(jù)題意,列出方程為A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19806.關于的方程有實數(shù)根,則整數(shù)的最大值是()A.6 B.7 C.8 D.97.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計如下表:最高氣溫(℃)

25

26

27

28

天數(shù)

1

1

2

3

則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,278.在實數(shù)0,-π,,-4中,最小的數(shù)是()A.0 B.-π C. D.-49.安徽省在一次精準扶貧工作中,共投入資金4670000元,將4670000用科學記數(shù)法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×10710.一個半徑為24的扇形的弧長等于20π,則這個扇形的圓心角是()A.120° B.135° C.150° D.165°二、填空題(共7小題,每小題3分,滿分21分)11.計算的結果等于_____.12.點A(x1,y1)、B(x1,y1)在二次函數(shù)y=x1﹣4x﹣1的圖象上,若當1<x1<1,3<x1<4時,則y1與y1的大小關系是y1_____y1.(用“>”、“<”、“=”填空)13.若一個多邊形的內(nèi)角和是900o,則這個多邊形是邊形.14.若m﹣n=4,則2m2﹣4mn+2n2的值為_____.15.如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點D、E分別為AM、AB上的動點,則BD+DE的最小值是_____.16.在一個不透明的布袋中,紅色、黑色的玻璃球共有20個,這些球除顏色外其它完全相同.將袋中的球攪勻,從中隨機摸出一個球,記下顏色后再放回袋中,不斷地重復這個過程,摸了200次后,發(fā)現(xiàn)有60次摸到黑球,請你估計這個袋中紅球約有_____個.17.計算(2a)3的結果等于__.三、解答題(共7小題,滿分69分)18.(10分)已知開口向下的拋物線y=ax2-2ax+2與y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關于對稱軸對稱,直線BD與x軸交于點M,直線AB與直線OD交于點N.(1)求點D的坐標.(2)求點M的坐標(用含a的代數(shù)式表示).(3)當點N在第一象限,且∠OMB=∠ONA時,求a的值.19.(5分)如圖所示,內(nèi)接于圓O,于D;(1)如圖1,當AB為直徑,求證:;(2)如圖2,當AB為非直徑的弦,連接OB,則(1)的結論是否成立?若成立請證明,不成立說明由;(3)如圖3,在(2)的條件下,作于E,交CD于點F,連接ED,且,若,,求CF的長度.20.(8分)解方程組21.(10分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.22.(10分)如圖是小強洗漱時的側面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此時小強頭部E點與地面DK相距多少?(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?23.(12分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率24.(14分)小明和小亮為下周日計劃了三項活動,分別是看電影(記為A)、去郊游(記為B)、去圖書館(記為C).他們各自在這三項活動中任選一個,每項活動被選中的可能性相同.(1)小明選擇去郊游的概率為多少;(2)請用樹狀圖或列表法求小明和小亮的選擇結果相同的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】a·a2=a3.故選D.2、A【解析】

由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總人數(shù),結合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總人數(shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對于不同的x,關于年齡的統(tǒng)計量不會發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點睛】本題主要考查頻數(shù)分布表及統(tǒng)計量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計算方法是解題的關鍵.3、B【解析】

先依據(jù)勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點睛】本題主要考查的是相切兩圓的性質(zhì)、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.4、B【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.5、D【解析】

根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,然后根據(jù)題意可列出方程.【詳解】根據(jù)題意得:每人要贈送(x﹣1)張相片,有x個人,∴全班共送:(x﹣1)x=1980,故選D.【點睛】此題主要考查了一元二次方程的應用,本題要注意讀清題意,弄清楚每人要贈送(x﹣1)張相片,有x個人是解決問題的關鍵.6、C【解析】

方程有實數(shù)根,應分方程是一元二次方程與不是一元二次方程,兩種情況進行討論,當不是一元二次方程時,a-6=0,即a=6;當是一元二次方程時,有實數(shù)根,則△≥0,求出a的取值范圍,取最大整數(shù)即可.【詳解】當a-6=0,即a=6時,方程是-1x+6=0,解得x=;

當a-6≠0,即a≠6時,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,

取最大整數(shù),即a=1.故選C.7、A【解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.8、D【解析】

根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】∵正數(shù)大于0和一切負數(shù),∴只需比較-π和-1的大小,∵|-π|<|-1|,∴最小的數(shù)是-1.故選D.【點睛】此題主要考查了實數(shù)的大小的比較,注意兩個無理數(shù)的比較方法:統(tǒng)一根據(jù)二次根式的性質(zhì),把根號外的移到根號內(nèi),只需比較被開方數(shù)的大小.9、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將4670000用科學記數(shù)法表示為4.67×106,故選B.【點睛】本題考查了科學記數(shù)法—表示較大的數(shù),解題的關鍵是掌握科學記數(shù)法的概念進行解答.10、C【解析】

這個扇形的圓心角的度數(shù)為n°,根據(jù)弧長公式得到20π=,然后解方程即可.【詳解】解:設這個扇形的圓心角的度數(shù)為n°,根據(jù)題意得20π=,解得n=150,即這個扇形的圓心角為150°.故選C.【點睛】本題考查了弧長公式:L=(n為扇形的圓心角的度數(shù),R為扇形所在圓的半徑).二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:直接利用二次根式的性質(zhì)進行化簡即可.詳解:==.故答案為.點睛:本題主要考查了分母有理化,正確掌握二次根式的性質(zhì)是解題的關鍵.12、<【解析】

先根據(jù)二次函數(shù)的解析式判斷出拋物線的開口方向及對稱軸,根據(jù)圖象上的點的橫坐標距離對稱軸的遠近來判斷縱坐標的大?。驹斀狻坑啥魏瘮?shù)y=x1-4x-1=(x-1)1-5可知,其圖象開口向上,且對稱軸為x=1,

∵1<x1<1,3<x1<4,

∴A點橫坐標離對稱軸的距離小于B點橫坐標離對稱軸的距離,

∴y1<y1.

故答案為<.13、七【解析】

根據(jù)多邊形的內(nèi)角和公式,列式求解即可.【詳解】設這個多邊形是邊形,根據(jù)題意得,,解得.故答案為.【點睛】本題主要考查了多邊形的內(nèi)角和公式,熟記公式是解題的關鍵.14、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當m﹣n=4時,原式=2×42=1.故答案為:1.15、8【解析】試題分析:過B點作于點,與交于點,根據(jù)三角形兩邊之和小于第三邊,可知的最小值是線的長,根據(jù)勾股定理列出方程組即可求解.過B點作于點,與交于點,設AF=x,,,,(負值舍去).故BD+DE的值是8故答案為8考點:軸對稱-最短路線問題.16、1【解析】

估計利用頻率估計概率可估計摸到黑球的概率為0.3,然后根據(jù)概率公式計算這個口袋中黑球的數(shù)量,繼而得出答案.【詳解】因為共摸了200次球,發(fā)現(xiàn)有60次摸到黑球,所以估計摸到黑球的概率為0.3,所以估計這個口袋中黑球的數(shù)量為20×0.3=6(個),則紅球大約有20-6=1個,故答案為:1.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.17、8【解析】試題分析:根據(jù)冪的乘方與積的乘方運算法則進行計算即可考點:(1)、冪的乘方;(2)、積的乘方三、解答題(共7小題,滿分69分)18、(1)D(2,2);(2);(3)【解析】

(1)令x=0求出A的坐標,根據(jù)頂點坐標公式或配方法求出頂點B的坐標、對稱軸直線,根據(jù)點A與點D關于對稱軸對稱,確定D點坐標.(2)根據(jù)點B、D的坐標用待定系數(shù)法求出直線BD的解析式,令y=0,即可求得M點的坐標.(3)根據(jù)點A、B的坐標用待定系數(shù)法求出直線AB的解析式,求直線OD的解析式,進而求出交點N的坐標,得到ON的長.過A點作AE⊥OD,可證△AOE為等腰直角三角形,根據(jù)OA=2,可求得AE、OE的長,表示出EN的長.根據(jù)tan∠OMB=tan∠ONA,得到比例式,代入數(shù)值即可求得a的值.【詳解】(1)當x=0時,,∴A點的坐標為(0,2)∵∴頂點B的坐標為:(1,2-a),對稱軸為x=1,∵點A與點D關于對稱軸對稱∴D點的坐標為:(2,2)(2)設直線BD的解析式為:y=kx+b把B(1,2-a)D(2,2)代入得:,解得:∴直線BD的解析式為:y=ax+2-2a當y=0時,ax+2-2a=0,解得:x=∴M點的坐標為:(3)由D(2,2)可得:直線OD解析式為:y=x設直線AB的解析式為y=mx+n,代入A(0,2)B(1,2-a)可得:解得:∴直線AB的解析式為y=-ax+2聯(lián)立成方程組:,解得:∴N點的坐標為:()ON=()過A點作AE⊥OD于E點,則△AOE為等腰直角三角形.∵OA=2∴OE=AE=,EN=ON-OE=()-=)∵M,C(1,0),B(1,2-a)∴MC=,BE=2-a∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴,即解得:a=或∵拋物線開口向下,故a<0,∴a=舍去,【點睛】本題是一道二次函數(shù)與一次函數(shù)及三角函數(shù)綜合題,掌握并靈活應用二次函數(shù)與一次函數(shù)的圖象與性質(zhì),以及構建直角三角形借助點的坐標使用相等角的三角函數(shù)是解題的關鍵.19、(1)見解析;(2)成立;(3)【解析】

(1)根據(jù)圓周角定理求出∠ACB=90°,求出∠ADC=90°,再根據(jù)三角形內(nèi)角和定理求出即可;(2)根據(jù)圓周角定理求出∠BOC=2∠A,求出∠OBC=90°-∠A和∠ACD=90°-∠A即可;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,在AD上取DG=BD,延長CG交AK于M,延長KO交⊙O于N,連接CN、AN,求出關于a的方程,再求出a即可.【詳解】(1)證明:∵AB為直徑,∴,∵于D,∴,∴,,∴;(2)成立,證明:連接OC,由圓周角定理得:,∵,∴,∵,∴,∴;(3)分別延長AE、CD交⊙O于H、K,連接HK、CH、AK,∵,,∴,∴,,∵,∴,∵根據(jù)圓周角定理得:,∴,∴由三角形內(nèi)角和定理得:,∴,∴,同理,∵,∴,在AD上取,延長CG交AK于M,則,,∴,∴,延長KO交⊙O于N,連接CN、AN,則,∴,∵,∴,∴四邊形CGAN是平行四邊形,∴,作于T,則T為CK的中點,∵O為KN的中點,∴,∵,,∴由勾股定理得:,∴,作直徑HS,連接KS,∵,,∴由勾股定理得:,∴,∴,設,,∴,,∵,∴,解得:,∴,∴.【點睛】本題考查了垂徑定理、解直角三角形、等腰三角形的性質(zhì)、圓周角定理、勾股定理等知識點,能綜合運用知識點進行推理是解此題的關鍵,綜合性比較強,難度偏大.20、【解析】

將②×3,再聯(lián)立①②消未知數(shù)即可計算.【詳解】解:②得:③①+③得:把代入③得∴方程組的解為【點睛】本題考查二元一次方程組解法,關鍵是掌握消元法.21、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉(zhuǎn)的性質(zhì)得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉(zhuǎn)的性質(zhì)得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯(lián)立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數(shù)綜合題;2.壓軸題;3.探究型;4.最值問題.22、(1)小強的頭部點E與地面DK的距離約為144.5cm.(2)他應向前9.5cm.【解析】試題分析:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.求出MF、FN的值即可解決問題;(2)求出OH、PH的值即可判斷;試題解析:解:(1)過點F作FN⊥DK于N,過點E作EM⊥FN于M.∵EF+FG=166,F(xiàn)G=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論