黑龍江省牡丹江一中下學(xué)期2023-2024學(xué)年高考數(shù)學(xué)五模試卷含解析_第1頁
黑龍江省牡丹江一中下學(xué)期2023-2024學(xué)年高考數(shù)學(xué)五模試卷含解析_第2頁
黑龍江省牡丹江一中下學(xué)期2023-2024學(xué)年高考數(shù)學(xué)五模試卷含解析_第3頁
黑龍江省牡丹江一中下學(xué)期2023-2024學(xué)年高考數(shù)學(xué)五模試卷含解析_第4頁
黑龍江省牡丹江一中下學(xué)期2023-2024學(xué)年高考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省牡丹江一中下學(xué)期2023-2024學(xué)年高考數(shù)學(xué)五模試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.2.設(shè)為坐標(biāo)原點(diǎn),是以為焦點(diǎn)的拋物線上任意一點(diǎn),是線段上的點(diǎn),且,則直線的斜率的最大值為()A. B. C. D.13.已知,則的大小關(guān)系是()A. B. C. D.4.正的邊長(zhǎng)為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.5.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個(gè)數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.6.設(shè),隨機(jī)變量的分布列是01則當(dāng)在內(nèi)增大時(shí),()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大7.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.8.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國(guó)數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.169.直線l過拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.710.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時(shí)間,采用分層抽樣的方法從高生和初中生中抽取一個(gè)容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.11.設(shè),,,則,,三數(shù)的大小關(guān)系是A. B.C. D.12.各項(xiàng)都是正數(shù)的等比數(shù)列的公比,且成等差數(shù)列,則的值為()A. B.C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.14.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長(zhǎng)度的最大值為___________.15.設(shè)為數(shù)列的前項(xiàng)和,若,則____16.在平面直角坐標(biāo)系xOy中,己知直線與函數(shù)的圖象在y軸右側(cè)的公共點(diǎn)從左到右依次為,,…,若點(diǎn)的橫坐標(biāo)為1,則點(diǎn)的橫坐標(biāo)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,已知點(diǎn),若以線段為直徑的圓與軸相切.(1)求點(diǎn)的軌跡的方程;(2)若上存在兩動(dòng)點(diǎn)(A,B在軸異側(cè))滿足,且的周長(zhǎng)為,求的值.18.(12分)在三角形ABC中,角A,B,C的對(duì)邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長(zhǎng).19.(12分)第十三屆全國(guó)人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國(guó)家立法中.為了解某城市居民的垃圾分類意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為.(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說明你的理由;(2)已知在試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.參考公式:,其中.下面的臨界值表僅供參考20.(12分)已知函數(shù)(),且只有一個(gè)零點(diǎn).(1)求實(shí)數(shù)a的值;(2)若,且,證明:.21.(12分)已知函數(shù)有兩個(gè)極值點(diǎn),.(1)求實(shí)數(shù)的取值范圍;(2)證明:.22.(10分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個(gè)半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計(jì)劃建造一條自小鎮(zhèn)經(jīng)小島至對(duì)岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計(jì)成與圓相切.設(shè).(1)試將通道的長(zhǎng)表示成的函數(shù),并指出定義域;(2)若建造通道的費(fèi)用是每公里100萬元,則建造此通道最少需要多少萬元?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.2、C【解析】試題分析:設(shè),由題意,顯然時(shí)不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選C.考點(diǎn):1.拋物線的簡(jiǎn)單幾何性質(zhì);2.均值不等式.【方法點(diǎn)晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運(yùn)用,屬于中檔題.解題時(shí)一定要注意分析條件,根據(jù)條件,利用向量的運(yùn)算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號(hào)是否成立,否則易出問題.3、B【解析】

利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對(duì)數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對(duì)稱,則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對(duì)數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.4、D【解析】

如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)?,故,因?yàn)椋?由正弦定理可得,故,又因?yàn)椋?因?yàn)?,故平面,所以,因?yàn)槠矫?,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計(jì)算,本題有一定的難度.5、A【解析】

結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項(xiàng)和公式和對(duì)數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點(diǎn)睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項(xiàng)和公式應(yīng)用,屬于中檔題6、C【解析】

,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對(duì)稱軸,開口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點(diǎn)睛】本題考查了利用隨機(jī)變量的分布列求隨機(jī)變量的期望與方差,屬于中檔題.7、C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.8、D【解析】

根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【詳解】,.故選:D【點(diǎn)睛】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.9、B【解析】

根據(jù)拋物線中過焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過拋物線的焦點(diǎn),由過拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.10、B【解析】

利用某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比計(jì)算即可.【詳解】由題意,,解得.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個(gè)數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.11、C【解析】

利用對(duì)數(shù)函數(shù),指數(shù)函數(shù)以及正弦函數(shù)的性質(zhì)和計(jì)算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點(diǎn)睛】本題考查對(duì)數(shù)值,指數(shù)值和正弦值大小的比較,是基礎(chǔ)題,解題時(shí)選擇合適的中間值比較是關(guān)鍵,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.12、C【解析】分析:解決該題的關(guān)鍵是求得等比數(shù)列的公比,利用題中所給的條件,建立項(xiàng)之間的關(guān)系,從而得到公比所滿足的等量關(guān)系式,解方程即可得結(jié)果.詳解:根據(jù)題意有,即,因?yàn)閿?shù)列各項(xiàng)都是正數(shù),所以,而,故選C.點(diǎn)睛:該題應(yīng)用題的條件可以求得等比數(shù)列的公比,而待求量就是,代入即可得結(jié)果.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

由題得,再根據(jù)求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.【點(diǎn)睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎(chǔ)題.14、【解析】

取的中點(diǎn)為M,由可得,可得M在上,當(dāng)最小時(shí),弦的長(zhǎng)才最大.【詳解】設(shè)為的中點(diǎn),,即,即,,.設(shè),則,得.所以,.故答案為:【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,考查學(xué)生的邏輯推理、數(shù)形結(jié)合的思想,是一道有一定難度的題.15、【解析】

當(dāng)時(shí),由,解得,當(dāng)時(shí),,兩式相減可得,即,可得數(shù)列是等比數(shù)列再求通項(xiàng)公式.【詳解】當(dāng)時(shí),,即,當(dāng)時(shí),,兩式相減可得,即,即,故數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,所以.故答案為:【點(diǎn)睛】本題考查數(shù)列的前項(xiàng)和與通項(xiàng)公式的關(guān)系,還考查運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.16、1【解析】

當(dāng)時(shí),得,或,依題意可得,可求得,繼而可得答案.【詳解】因?yàn)辄c(diǎn)的橫坐標(biāo)為1,即當(dāng)時(shí),,所以或,又直線與函數(shù)的圖象在軸右側(cè)的公共點(diǎn)從左到右依次為,,所以,故,所以函數(shù)的關(guān)系式為.當(dāng)時(shí),(1),即點(diǎn)的橫坐標(biāo)為1,為二函數(shù)的圖象的第二個(gè)公共點(diǎn).故答案為:1.【點(diǎn)睛】本題考查三角函數(shù)關(guān)系式的恒等變換、正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力及思維能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)設(shè),則由題設(shè)條件可得,化簡(jiǎn)后可得軌跡的方程.(2)設(shè)直線,聯(lián)立直線方程和拋物線方程后利用韋達(dá)定理化簡(jiǎn)并求得,結(jié)合焦半徑公式及弦長(zhǎng)公式可求的值及的長(zhǎng).【詳解】(1)設(shè),則圓心的坐標(biāo)為,因?yàn)橐跃€段為直徑的圓與軸相切,所以,化簡(jiǎn)得的方程為.(2)由題意,設(shè)直線,聯(lián)立得,設(shè)(其中)所以,,且,因?yàn)椋?,,所以,故或(舍),直線,因?yàn)榈闹荛L(zhǎng)為所以.即,因?yàn)?又,所以,解得,所以.【點(diǎn)睛】本題考查曲線方程以及拋物線中的弦長(zhǎng)計(jì)算,還涉及到向量的數(shù)量積.一般地,拋物線中的弦長(zhǎng)問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把已知等式化為關(guān)于兩個(gè)的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為某一個(gè)變量的方程.本題屬于中檔題.18、(1)(2)【解析】

(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因?yàn)榻菫殁g角,,所以,又,所以,且,所以.(2)因?yàn)?,且,所以,又,則,所以.19、(1)有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.見解析(2)分布列見解析,期望為1.【解析】

(1)由在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為可得列聯(lián)表,然后計(jì)算后可得結(jié)論;(2)由已知的取值分別為,分別計(jì)算概率得分布列,由公式計(jì)算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機(jī)抽取戶,到分類意識(shí)強(qiáng)的概率為,可得分類意識(shí)強(qiáng)的有戶,故可得列聯(lián)表如下:分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)因?yàn)榈挠^測(cè)值,所以有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.(2)現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,,,,則的分布列為.【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.考查學(xué)生的數(shù)據(jù)處理能力和運(yùn)算求解能力.20、(1)(2)證明見解析【解析】

(1)求導(dǎo)可得在上,在上,所以函數(shù)在時(shí),取最小值,由函數(shù)只有一個(gè)零點(diǎn),觀察可知?jiǎng)t有,即可求得結(jié)果.(2)由(1)可知為最小值,則構(gòu)造函數(shù)(),求導(dǎo)借助基本不等式可判斷為減函數(shù),即可得,即則有,由已知可得,由,可知,因?yàn)闀r(shí),為增函數(shù),即可得證得結(jié)論.【詳解】(1)().因?yàn)椋?,令得,,且,,在上;在上;所以函?shù)在時(shí),取最小值,當(dāng)最小值為0時(shí),函數(shù)只有一個(gè)零點(diǎn),易得,所以,解得.(2)由(1)得,函數(shù),設(shè)(),則,設(shè)(),則,,所以為減函數(shù),所以,即,所以,即,又,所以,又當(dāng)時(shí),為增函數(shù),所以,即.【點(diǎn)睛】本題考查借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值,考查學(xué)生分析問題的能力,及邏輯推理能力,難度困難.21、(1)(2)證明見解析【解析】

(1)先求得導(dǎo)函數(shù),根據(jù)兩個(gè)極值點(diǎn)可知有兩個(gè)不等實(shí)根,構(gòu)造函數(shù),求得;討論和兩種情況,即可確定零點(diǎn)的情況,即可由零點(diǎn)的情況確定的取值范圍;(2)根據(jù)極值點(diǎn)定義可知,,代入不等式化簡(jiǎn)變形后可知只需證明;構(gòu)造函數(shù),并求得,進(jìn)而判斷的單調(diào)區(qū)間,由題意可知,并設(shè),構(gòu)造函數(shù),并求得,即可判斷在內(nèi)的單調(diào)性和最值,進(jìn)而可得,即可由函數(shù)性質(zhì)得,進(jìn)而由單調(diào)性證明,即證明,從而證明原不等式成立.【詳解】(1)函數(shù)則,因?yàn)榇嬖趦蓚€(gè)極值點(diǎn),,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論