版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆上海市長寧區(qū)市級名校高三下學期第六次檢測數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.2.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.83.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.4.已知函數(shù)若恒成立,則實數(shù)的取值范圍是()A. B. C. D.5.《九章算術(shù)》是我國古代數(shù)學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機取一點,則此點取自內(nèi)切圓的概率是()A. B. C. D.6.函數(shù)圖像可能是()A. B. C. D.7.tan570°=()A. B.- C. D.8.已知向量,,且,則()A. B. C.1 D.29.函數(shù)f(x)=2x-3A.[32C.[3210.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-211.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.12.數(shù)列滿足,且,,則()A. B.9 C. D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則過原點且與曲線相切的直線方程為____________.14.已知集合,,則________.15.已知函數(shù),若的最小值為,則實數(shù)的取值范圍是_________16.已知三棱錐的四個頂點都在球的球面上,,則球的表面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.18.(12分)求下列函數(shù)的導數(shù):(1)(2)19.(12分)班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)(2)如果隨機抽取的7名同學的數(shù)學,物理成績(單位:分)對應(yīng)如下表:學生序號1234567數(shù)學成績60657075858790物理成績70778085908693①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學期望;②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學的數(shù)學成績?yōu)?6分,預測該同學的物理成績?yōu)槎嗌俜??附:線性回歸方程,其中,.768381252620.(12分)已知橢圓的右焦點為,過點且斜率為的直線與橢圓交于兩點,線段的中點為為坐標原點.(1)證明:點在軸的右側(cè);(2)設(shè)線段的垂直平分線與軸、軸分別相交于點.若與的面積相等,求直線的斜率21.(12分)已知函數(shù).(1)當時,求函數(shù)的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.22.(10分)在直角坐標系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.2、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.3、B【解析】
每個式子的值依次構(gòu)成一個數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項歸納出遞推關(guān)系,從而可確定數(shù)列的一些項.4、D【解析】
由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當時,不符合題意,只須考慮的情形,當與圖象相切于時,由導數(shù)幾何意義,此時,故.故選:D【點睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.5、C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運算能力.6、D【解析】
先判斷函數(shù)的奇偶性可排除選項A,C,當時,可分析函數(shù)值為正,即可判斷選項.【詳解】,,即函數(shù)為偶函數(shù),故排除選項A,C,當正數(shù)越來越小,趨近于0時,,所以函數(shù),故排除選項B,故選:D【點睛】本題主要考查了函數(shù)的奇偶性,識別函數(shù)的圖象,屬于中檔題.7、A【解析】
直接利用誘導公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數(shù)的恒等變換及化簡求值,主要考查誘導公式的應(yīng)用,屬于基礎(chǔ)題.8、A【解析】
根據(jù)向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎(chǔ)題.9、A【解析】
根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因為函數(shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域為a,b,則函數(shù)fgx10、B【解析】
由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當時,有最大值,當時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.11、D【解析】
根據(jù)題意判斷出函數(shù)的單調(diào)性,從而根據(jù)單調(diào)性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關(guān)于直線對稱;在,上單調(diào)遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質(zhì)及其應(yīng)用,意在考查學生對這些知識的理解掌握水平和分析推理能力.12、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質(zhì)和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)切點坐標為,利用導數(shù)求出曲線在切點的切線方程,將原點代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設(shè)切點坐標為,,,,則曲線在點處的切線方程為,由于該直線過原點,則,得,因此,則過原點且與曲線相切的直線方程為,故答案為.【點睛】本題考查導數(shù)的幾何意義,考查過點作函數(shù)圖象的切線方程,求解思路是:(1)先設(shè)切點坐標,并利用導數(shù)求出切線方程;(2)將所過點的坐標代入切線方程,求出參數(shù)的值,可得出切點的坐標;(3)將參數(shù)的值代入切線方程,可得出切線的方程.14、【解析】
利用交集定義直接求解.【詳解】解:集合奇數(shù),偶數(shù),.故答案為:.【點睛】本題考查交集的求法,考查交集定義等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.15、【解析】
,可得在時,最小值為,時,要使得最小值為,則對稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當,,當且僅當時,等號成立.當時,為二次函數(shù),要想在處取最小,則對稱軸要滿足并且,即,解得.【點睛】本題考查分段函數(shù)的最值問題,對每段函數(shù)先進行分類討論,找到每段的最小值,然后再對兩段函數(shù)的最小值進行比較,得到結(jié)果,題目較綜合,屬于中檔題.16、【解析】
如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,計算得到,得到答案.【詳解】如圖所示,將三棱錐補成長方體,球為長方體的外接球,長、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點睛】本題考查了三棱錐的外接球問題,意在考查學生的計算能力和空間想象能力,將三棱錐補成長方體是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)將轉(zhuǎn)化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調(diào)遞減,在上單調(diào)遞增,進而可得,即,即可證出.【詳解】函數(shù)的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當時,,故在上單調(diào)遞增,又,所以當時,,不符合題意;當時,令得,當時,;當時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當時,;當時,,所以在單調(diào)遞減,在上單調(diào)遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當,時,即在上單調(diào)遞增;又,,所以,使得,當時,;當時,,即在上單調(diào)遞減,在上單調(diào)遞增,且所以,即,所以,即.【點睛】本題主要考查利用導數(shù)法求函數(shù)的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數(shù)的單調(diào)性的考查,同時考查轉(zhuǎn)化與化歸的思想,屬于中檔題.18、(1);(2).【解析】
(1)根據(jù)復合函數(shù)的求導法則可得結(jié)果.(2)同樣根據(jù)復合函數(shù)的求導法則可得結(jié)果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點睛】本題考查復合函數(shù)的導數(shù),此類問題一般是先把函數(shù)分解為簡單函數(shù)的復合,再根據(jù)復合函數(shù)的求導法則可得所求的導數(shù),本題屬于容易題.19、(1)不同的樣本的個數(shù)為.(2)①分布列見解析,.②線性回歸方程為.可預測該同學的物理成績?yōu)?6分.【解析】
(1)按比例抽取即可,再用乘法原理計算不同的樣本數(shù).(2)名學生中物理和數(shù)學都優(yōu)秀的有3名學生,任取3名學生,都優(yōu)秀的學生人數(shù)服從超幾何分布,故可得其概率分布列及其數(shù)學期望.而線性回歸方程的計算可用給出的公式計算,并利用得到的回歸方程預測該同學的物理成績.【詳解】(1)依據(jù)分層抽樣的方法,24名女同學中應(yīng)抽取的人數(shù)為名,18名男同學中應(yīng)抽取的人數(shù)為名,故不同的樣本的個數(shù)為.(2)①∵7名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為3名,∴的取值為0,1,2,3.∴,,,.∴的分布列為0123∴.②∵,.∴線性回歸方程為.當時,.可預測該同學的物理成績?yōu)?6分.【點睛】在計算離散型隨機變量的概率時,注意利用常見的概率分布列來簡化計算(如二項分布、超幾何分布等).20、(1)證明見解析(2)【解析】
(1)設(shè)出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系求出點的橫坐標即可證出;(2)根據(jù)線段的垂直平分線求出點的坐標,即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設(shè),,聯(lián)立消去,得,顯然,,則點的橫坐標,因為,所以點在軸的右側(cè).(2)由(1)得點的縱坐標.即.所以線段的垂直平分線方程為:.令,得;令,得.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國社區(qū)養(yǎng)老服務(wù)行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 2025-2030年中國美甲行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 脂肪酶活檢測原理及方法
- 服裝品牌意向調(diào)查問卷
- 建設(shè)廉潔政治讀書心得體會-總結(jié)報告模板
- 2024年游記作文300字
- 商品知識培訓課件下載
- 打造高績效團隊培訓課件2
- 年產(chǎn)7000噸銅、鋁電磁線項目可行性研究報告模板-立項拿地
- 二零二五年度安全生產(chǎn)標準化體系完善與維護服務(wù)合同3篇
- 期末測試卷(一)(試題)2023-2024學年二年級上冊數(shù)學蘇教版
- 泌尿外科品管圈
- 2024-2030年中國真空滅弧室行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 廣東省深圳市(2024年-2025年小學四年級語文)統(tǒng)編版期末考試(上學期)試卷及答案
- 服務(wù)基層行資料(藥品管理)
- 2024年中考數(shù)學壓軸題:圓與相似及三角函數(shù)綜合問題(教師版含解析)
- 安徽省2023-2024學年七年級上學期期末數(shù)學試題(原卷版)
- 2023-2024學年江蘇省連云港市贛榆區(qū)九年級(上)期末英語試卷
- 朝鮮戶籍制度
- DZ/T 0462.3-2023 礦產(chǎn)資源“三率”指標要求 第3部分:鐵、錳、鉻、釩、鈦(正式版)
- 壓力性損傷(壓瘡)質(zhì)量管理與控制
評論
0/150
提交評論