版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
貴州省遵義市高中名校2024屆高考沖刺數(shù)學(xué)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知定義在上的函數(shù)的周期為4,當(dāng)時(shí),,則()A. B. C. D.2.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.3.國(guó)務(wù)院發(fā)布《關(guān)于進(jìn)一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費(fèi)使用效益的意見》中提出,要優(yōu)先落實(shí)教育投入.某研究機(jī)構(gòu)統(tǒng)計(jì)了年至年國(guó)家財(cái)政性教育經(jīng)費(fèi)投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯(cuò)誤的是()A.隨著文化教育重視程度的不斷提高,國(guó)在財(cái)政性教育經(jīng)費(fèi)的支出持續(xù)增長(zhǎng)B.年以來(lái),國(guó)家財(cái)政性教育經(jīng)費(fèi)的支出占比例持續(xù)年保持在以上C.從年至年,中國(guó)的總值最少增加萬(wàn)億D.從年到年,國(guó)家財(cái)政性教育經(jīng)費(fèi)的支出增長(zhǎng)最多的年份是年4.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2825.已知函數(shù)滿足,當(dāng)時(shí),,則()A.或 B.或C.或 D.或6.已知向量,若,則實(shí)數(shù)的值為()A. B. C. D.7.半徑為2的球內(nèi)有一個(gè)內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.8.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.9.從裝有除顏色外完全相同的3個(gè)白球和個(gè)黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則A. B. C. D.10.己知函數(shù)的圖象與直線恰有四個(gè)公共點(diǎn),其中,則()A. B.0 C.1 D.11.復(fù)數(shù),是虛數(shù)單位,則下列結(jié)論正確的是A. B.的共軛復(fù)數(shù)為C.的實(shí)部與虛部之和為1 D.在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于第一象限12.如圖,在等腰梯形中,,,,為的中點(diǎn),將與分別沿、向上折起,使、重合為點(diǎn),則三棱錐的外接球的體積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某地區(qū)教育主管部門為了對(duì)該地區(qū)模擬考試成績(jī)進(jìn)行分析,隨機(jī)抽取了150分到450分之間的1000名學(xué)生的成績(jī),并根據(jù)這1000名學(xué)生的成績(jī)畫出樣本的頻率分布直方圖(如圖),則成績(jī)?cè)赱250,400)內(nèi)的學(xué)生共有____人.14.已知,則_____.15.已知點(diǎn)為雙曲線的右焦點(diǎn),兩點(diǎn)在雙曲線上,且關(guān)于原點(diǎn)對(duì)稱,若,設(shè),且,則該雙曲線的焦距的取值范圍是________.16.在回歸分析的問(wèn)題中,我們可以通過(guò)對(duì)數(shù)變換把非線性回歸方程,()轉(zhuǎn)化為線性回歸方程,即兩邊取對(duì)數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,平面四邊形中,,是上的一點(diǎn),是的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.18.(12分)如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過(guò)且斜率為的直線交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),(1)求橢圓的方程.(2)當(dāng)時(shí),求的面積.19.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.20.(12分)百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長(zhǎng)班進(jìn)行專項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過(guò)自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過(guò)畫散點(diǎn)圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過(guò)自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測(cè)2019年高考該??既嗣5娜藬?shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,21.(12分)如圖1,在等腰中,,,分別為,的中點(diǎn),為的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值22.(10分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點(diǎn)的個(gè)數(shù);(2)記函數(shù)在區(qū)間上的兩個(gè)極值點(diǎn)分別為、,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
因?yàn)榻o出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對(duì)數(shù)恒等式和對(duì)數(shù)的運(yùn)算性質(zhì),即可求得結(jié)果.【詳解】定義在上的函數(shù)的周期為4,當(dāng)時(shí),,,,.故選:A.【點(diǎn)睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對(duì)數(shù)的運(yùn)算性質(zhì),屬于中檔題.2、A【解析】
準(zhǔn)確畫圖,由圖形對(duì)稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.【詳解】設(shè)與軸交于點(diǎn),由對(duì)稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點(diǎn)在圓上,,即.,故選A.【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問(wèn)題是圓錐曲線中的重點(diǎn)問(wèn)題,需強(qiáng)化練習(xí),才能在解決此類問(wèn)題時(shí)事半功倍,信手拈來(lái).3、C【解析】
觀察圖表,判斷四個(gè)選項(xiàng)是否正確.【詳解】由表易知、、項(xiàng)均正確,年中國(guó)為萬(wàn)億元,年中國(guó)為萬(wàn)億元,則從年至年,中國(guó)的總值大約增加萬(wàn)億,故C項(xiàng)錯(cuò)誤.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表,正確認(rèn)識(shí)圖表是解題基礎(chǔ).4、B【解析】
將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長(zhǎng)交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題5、C【解析】
簡(jiǎn)單判斷可知函數(shù)關(guān)于對(duì)稱,然后根據(jù)函數(shù)的單調(diào)性,并計(jì)算,結(jié)合對(duì)稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對(duì)稱當(dāng)時(shí),,可知在單調(diào)遞增則又函數(shù)關(guān)于對(duì)稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點(diǎn)睛】本題考查函數(shù)的對(duì)稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗(yàn)分析能力,屬中檔題.6、D【解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實(shí)數(shù)的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點(diǎn)睛】本題考查了向量的數(shù)量積,考查了向量的坐標(biāo)運(yùn)算.對(duì)于向量問(wèn)題,若已知垂直,通??傻玫絻蓚€(gè)向量的數(shù)量積為0,繼而結(jié)合條件進(jìn)行化簡(jiǎn)、整理.7、B【解析】
設(shè)正三棱柱上下底面的中心分別為,底面邊長(zhǎng)與高分別為,利用,可得,進(jìn)一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長(zhǎng)與高分別為,則,在中,,化為,,,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).故選:B.【點(diǎn)睛】本題考查正三棱柱與球的切接問(wèn)題,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道中檔題.8、C【解析】
由圖象可知,可解得,利用三角恒等變換化簡(jiǎn)解析式可得,令,即可求得.【詳解】依題意,,即,解得;因?yàn)樗?,?dāng)時(shí),.故選:C.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡(jiǎn)中的應(yīng)用,難度一般.9、B【解析】
由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點(diǎn)睛】本題考查離散型隨機(jī)變量的方差的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用.10、A【解析】
先將函數(shù)解析式化簡(jiǎn)為,結(jié)合題意可求得切點(diǎn)及其范圍,根據(jù)導(dǎo)數(shù)幾何意義,即可求得的值.【詳解】函數(shù)即直線與函數(shù)圖象恰有四個(gè)公共點(diǎn),結(jié)合圖象知直線與函數(shù)相切于,,因?yàn)?,故,所?故選:A.【點(diǎn)睛】本題考查了三角函數(shù)的圖像與性質(zhì)的綜合應(yīng)用,由交點(diǎn)及導(dǎo)數(shù)的幾何意義求函數(shù)值,屬于難題.11、D【解析】
利用復(fù)數(shù)的四則運(yùn)算,求得,在根據(jù)復(fù)數(shù)的模,復(fù)數(shù)與共軛復(fù)數(shù)的概念等即可得到結(jié)論.【詳解】由題意,則,的共軛復(fù)數(shù)為,復(fù)數(shù)的實(shí)部與虛部之和為,在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)位于第一象限,故選D.【點(diǎn)睛】復(fù)數(shù)代數(shù)形式的加減乘除運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化,其次要熟悉復(fù)數(shù)相關(guān)基本概念,如復(fù)數(shù)的實(shí)部為、虛部為、模為、對(duì)應(yīng)點(diǎn)為、共軛為.12、A【解析】
由題意等腰梯形中的三個(gè)三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長(zhǎng)為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點(diǎn)睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.二、填空題:本題共4小題,每小題5分,共20分。13、750【解析】因?yàn)?.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.00514、【解析】
對(duì)原方程兩邊求導(dǎo),然后令求得表達(dá)式的值.【詳解】對(duì)等式兩邊求導(dǎo),得,令,則.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.15、【解析】
設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點(diǎn)睛】本題考查雙曲線定義及其性質(zhì),涉及到求余弦型函數(shù)的值域,考查學(xué)生的運(yùn)算能力,是一道中檔題.16、【解析】
轉(zhuǎn)化()為,即得解.【詳解】由題意:().故答案為:【點(diǎn)睛】本題考查類比法求函數(shù)的值域,考查了學(xué)生邏輯推理,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析;(2)【解析】
(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數(shù)據(jù)可證得為等邊三角形,又由于是的中點(diǎn),所以,從而可證得結(jié)論;(2)由于在中,,而平面平面,所以點(diǎn)在平面的投影恰好為的中點(diǎn),所以如圖建立空間直角坐標(biāo)系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設(shè),因?yàn)?所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點(diǎn),所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點(diǎn),所以,由(1)可知平面平面,平面平面,所以平面,以為坐標(biāo)原點(diǎn),方向?yàn)檩S方向,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè)平面的法向量,由得取,則設(shè)直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點(diǎn),所以,由(1)可知平面平面,平面平面,所以平面,過(guò)作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設(shè)到平面的距離為,由,即,即,可得,設(shè)直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點(diǎn)睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學(xué)生的轉(zhuǎn)化思想和計(jì)算能力,屬于中檔題.18、(1)(2)【解析】
(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.【詳解】(1)因?yàn)橹本€過(guò)點(diǎn),且斜率.所以直線的方程為,即,所以圓心到直線的距離為,又因?yàn)?,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為.(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率,則點(diǎn)到右準(zhǔn)線的距離為,所以,即,把代入橢圓方程得,,因?yàn)橹本€的斜率,所以,因?yàn)橹本€經(jīng)過(guò)和,所以直線的方程為,聯(lián)立方程組得,解得或,所以,所以的面積.【點(diǎn)睛】本題主要考查直線和圓、橢圓的位置關(guān)系,考查橢圓的方程的求法,考查三角形面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理計(jì)算能力.19、(1)(2)的遞減區(qū)間為和【解析】
(1)化簡(jiǎn)函數(shù),代入,計(jì)算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點(diǎn)睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.20、(1);(2)117人;(3)分布列見解析,【解析】
(1)首先求得和,再代入公式即可列方程,由此求得關(guān)于的線性回歸方程;(2)根據(jù)回歸直線方程計(jì)算公式,計(jì)算可得人數(shù);(3)和被選中的人數(shù)分別為2和3,利用超幾何分布分布列的計(jì)算公式,計(jì)算出的分布列,并求得數(shù)學(xué)期望.【詳解】(1)由題,所以線性回歸方程為(若第一問(wèn)求出.)(2)當(dāng)時(shí),所以預(yù)測(cè)2019年高考該??既朊5娜藬?shù)約為117人(3)由題知和被選中的人數(shù)分別為2和3,進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的所有可能取值為0,1,2,,的分布列為012【點(diǎn)睛】本小題主要考查平均數(shù)有關(guān)計(jì)算,考查回歸直線方程的計(jì)算,考查期望的計(jì)算,考查超幾何分布和數(shù)據(jù)處理能力,屬于中檔題.21、(1)證明見解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點(diǎn),連接,根據(jù)條件證明,即;(2)以為原點(diǎn),所在直線為軸,過(guò)作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求兩個(gè)平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點(diǎn),連接.∵,∴為的中點(diǎn).又為的中點(diǎn),∴.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 區(qū)域活動(dòng)家長(zhǎng)會(huì)
- 物聯(lián)網(wǎng)企業(yè)介紹
- 泡沫滅火演練講解
- 大學(xué)生職業(yè)生涯規(guī)劃
- 認(rèn)知與知覺障礙的作業(yè)治療
- 3.4沉淀溶解平衡 同步練習(xí)高二化學(xué)人教版(2019)選擇性必修1
- 初中物理教案課后反思
- 彩虹的盡頭教案反思
- 蝴蝶落我家說(shuō)課稿
- 汽車美容店加油站施工合同
- 初中英語(yǔ)詞性講解課件
- 陜西中考物理備考策略課件
- 9F燃機(jī)燃機(jī)規(guī)程
- aiissti變頻器說(shuō)明書
- 綠化養(yǎng)護(hù)報(bào)價(jià)表
- 家校溝通案例七篇
- 大學(xué)生心理健康教育論文范文3000字(8篇)
- 新保險(xiǎn)法試題
- 退行性腰椎間盤病診療和階梯治療
- 新材料概論課件ppt 第7章 信息功能材料
- 《悅納至正讓兒童生命幸福生長(zhǎng)》莞城中心小學(xué)品牌培育工作匯報(bào)修改版
評(píng)論
0/150
提交評(píng)論