


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
BP神經(jīng)網(wǎng)絡(luò)在巖層爆破參數(shù)優(yōu)化中的應(yīng)用Title:ApplicationofBPNeuralNetworksinOptimizationofRockBlastingParametersAbstract:Rockblastingisawidelyusedtechniqueinmining,quarrying,andconstructionindustriestobreaklargerocksintosmallerfragments.Theefficiencyandsafetyofblastingoperationsdependontheoptimalselectionofvariousparameters.Inrecentyears,artificialintelligencetechniquessuchasneuralnetworkshavebeenappliedtooptimizerockblastingparameters.ThispaperfocusesontheapplicationofBackpropagation(BP)neuralnetworksintheoptimizationofrockblastingparameters.Introduction:Rockblastinginvolvesthereleaseofenergyinaconfinedspacetofragmentrocksintosmallerpieces.Theparametersinvolvedinthesuccessfulexecutionofablastingoperationincludeexplosivetype,blastholediameterandlength,spacing,burden,stemming,initiationsequence,anddelaytime.Theoptimalselectionoftheseparametersisessentialtomaximizerockfragmentation,minimizeenergyconsumption,reduceenvironmentalimpacts,andensuresafety.BPNeuralNetworks:TheBPneuralnetworkisatypeofartificialneuralnetworkthatiswidelyusedforpatternrecognition,dataanalysis,andoptimizationproblems.Itisafeedforwardneuralnetworkthatconsistsofaninputlayer,oneormorehiddenlayers,andanoutputlayer.Thenetworkistrainedusingabackpropagationalgorithm,whichadjuststheweightsandbiasesofthenetworktominimizethedifferencebetweenthepredictedoutputandthedesiredoutput.ApplicationinRockBlastingParameterOptimization:1.DatasetCreation:ThefirststepinusingaBPneuralnetworkforoptimizingrockblastingparametersisthecreationofadataset.Dataiscollectedfrompastblastingoperations,includinginformationonthegeologicalconditions,blastdesign,andresultingfragmentation.Thisdatasetisusedtotraintheneuralnetwork.2.InputandOutputSelection:Theinputvariablesfortheneuralnetworkareselectedbasedontheirrelevanceandavailability.Thesemayincluderockproperties(density,hardness),blastholecharacteristics(diameter,spacing),andexplosiveproperties(type,energy).Thedesiredoutputoftheneuralnetworkistypicallythefragmentationsizedistribution.3.NetworkTraining:Thecreateddatasetisdividedintotrainingandtestingsets.Thetrainingsetisusedtoadjusttheweightsandbiasesoftheneuralnetworkusingthebackpropagationalgorithm.Thetestingsetisusedtoevaluatetheperformanceofthetrainednetworkandassessitsgeneralizationcapabilities.4.Optimization:Oncetheneuralnetworkistrained,itcanbeusedtooptimizetherockblastingparameters.Byinputtingthedesiredfragmentationsizedistribution,thenetworkcanprovidetheoptimalcombinationofparametersthatwouldachievethedesiredoutcome.Thisoptimizationprocessreducestheneedfortime-consumingandcostlytrialanderrormethods.AdvantagesofBPNeuralNetworks:1.Non-LinearRelationship:Rockblastingparametershavecomplexandnon-linearrelationshipswiththeresultingfragmentation.Traditionaloptimizationtechniquesmaystruggletocapturetheserelationships,whereasBPneuralnetworksexcelathandlingnon-linearproblems.2.Adaptability:Thetrainedneuralnetworkcanadapttodifferentgeologicalconditionsandblastingscenarios,makingitaversatiletoolforoptimization.3.Predictability:Oncetrained,theneuralnetworkcanprovidevaluableinsightsintotheimpactofchangingindividualparametersonthefragmentationsizedistribution.4.TimeandCostSavings:TheoptimizationofrockblastingparametersusingBPneuralnetworksreducestheneedforextensivefieldexperimentsandensuresmoreeffectiveuseofresources,leadingtosignificanttimeandcostsavings.Conclusion:TheapplicationofBPneuralnetworksinoptimizingrockblastingparametershasproventobeavaluabletoolinthemining,quarrying,andconstructionindustries.Byutilizinghistoricaldataandtrainingtheneuralnetwork,itcanaccuratelypredicttheoptimalcombinationofparameterstoachievethedesiredfragmentationsizedistribution.TheadvantagesofBPneuralnetworksinhandlingnon-linearrelationships,adaptability,predictability,andtimeandcostsavingsmakethemanattractive
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 母豬飼養(yǎng)技術(shù)考核試題及答案
- 系統(tǒng)架構(gòu)設(shè)計(jì)師職業(yè)生涯與考試的關(guān)系探索試題及答案
- 2025版高考化學(xué)一輪復(fù)習(xí)課后限時(shí)集訓(xùn)10富集在海水中的元素-鹵素ClBrI含解析新人教版
- 綜合性藥劑考試考題試題及答案
- 三年級(jí)數(shù)學(xué)上冊(cè)第3單元圖形的運(yùn)動(dòng)一3.2旋轉(zhuǎn)現(xiàn)象教案2冀教版
- 2025版高中數(shù)學(xué)第一章解三角形1.2應(yīng)用舉例第2課時(shí)角度問題及其他學(xué)案含解析新人教B版必修5
- 文化產(chǎn)業(yè)管理資格考試試題及答案
- 2024-2025學(xué)年高中地理第二章旅游景觀的欣賞2.2中國名景欣賞課時(shí)訓(xùn)練湘教版選修3
- 實(shí)現(xiàn)高效學(xué)習(xí)的光電工程師證書考試試題及答案
- 2024-2025學(xué)年高中化學(xué)第二章官能團(tuán)與有機(jī)化學(xué)反應(yīng)烴的衍生物2.2.1醇學(xué)案魯科版選修5
- 矮小癥的護(hù)理措施
- 2024年襄陽市樊城區(qū)城市更新投資發(fā)展有限公司招聘筆試真題
- 2025年中國酸奶飲品行業(yè)市場深度評(píng)估及投資戰(zhàn)略規(guī)劃報(bào)告
- 2025年新高考?xì)v史預(yù)測模擬試卷黑吉遼蒙卷(含答案解析)
- 新增值稅法的變化要點(diǎn)與實(shí)務(wù)要領(lǐng)
- 2024年電子商務(wù)物流挑戰(zhàn)試題及答案
- 2025年高考英語二輪復(fù)習(xí)專題05 閱讀七選五(練習(xí))(解析版)
- 門式架搭設(shè)方案
- 鐵路網(wǎng)絡(luò)安全知識(shí)培訓(xùn)
- 煤礦事故案例警示
- 2025年南通師范高等專科學(xué)校高職單招(數(shù)學(xué))歷年真題考點(diǎn)含答案解析
評(píng)論
0/150
提交評(píng)論