




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省鎮(zhèn)江一中等高三3月份第一次模擬考試數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,網格紙是由邊長為1的小正方形構成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.2.已知函數,,若對任意的,存在實數滿足,使得,則的最大值是()A.3 B.2 C.4 D.53.在中,已知,,,為線段上的一點,且,則的最小值為()A. B. C. D.4.函數的圖象大致為()A. B.C. D.5.已知(),i為虛數單位,則()A. B.3 C.1 D.56.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-17.已知為定義在上的奇函數,若當時,(為實數),則關于的不等式的解集是()A. B. C. D.8.劉徽是我國魏晉時期偉大的數學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內隨機取一個點,此點取自朱方的概率為()A. B. C. D.9.復數(i為虛數單位)的共軛復數是A.1+i B.1?i C.?1+i D.?1?i10.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.12811.已知中內角所對應的邊依次為,若,則的面積為()A. B. C. D.12.已知復數z滿足,則z的虛部為()A. B.i C.–1 D.1二、填空題:本題共4小題,每小題5分,共20分。13.若冪函數的圖象經過點,則其單調遞減區(qū)間為_______.14.設函數,則______.15.已知,,求____________.16.已知函數在上僅有2個零點,設,則在區(qū)間上的取值范圍為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是遞增的等差數列,,是方程的根.(1)求的通項公式;(2)求數列的前項和.18.(12分)已知函數(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.19.(12分)在平面直角坐標系中,已知橢圓的短軸長為,直線與橢圓相交于兩點,線段的中點為.當與連線的斜率為時,直線的傾斜角為(1)求橢圓的標準方程;(2)若是以為直徑的圓上的任意一點,求證:20.(12分)已知函數.(1)若函數在上單調遞減,求實數的取值范圍;(2)若,求的最大值.21.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大小;(2)求函數的值域.22.(10分)已知函數.(Ⅰ)解不等式;(Ⅱ)設其中為常數.若方程在上恰有兩個不相等的實數根,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據三視圖還原為幾何體,結合組合體的結構特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關鍵,側重考查直觀想象和數學運算的核心素養(yǎng).2、A【解析】
根據條件將問題轉化為,對于恒成立,然后構造函數,然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數研究函數的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.3、A【解析】
在中,設,,,結合三角形的內角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標系,根據已知條件結合向量的坐標運算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設,,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標系,則、、,為線段上的一點,則存在實數使得,,設,,則,,,,,消去得,,所以,,當且僅當時,等號成立,因此,的最小值為.故選:A.【點睛】本題是一道構思非常巧妙的試題,綜合考查了三角形的內角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關鍵是理解是一個單位向量,從而可用、表示,建立、與參數的關系,解決本題的第二個關鍵點在于由,發(fā)現為定值,從而考慮利用基本不等式求解最小值,考查計算能力,屬于難題.4、A【解析】
用偶函數的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數為偶函數,圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據函數的性質,辨析函數的圖像,排除法,屬于中檔題.5、C【解析】
利用復數代數形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.【點睛】本題考查復數代數形式的乘法運算,是基礎題.6、D【解析】
利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.7、A【解析】
先根據奇函數求出m的值,然后結合單調性求解不等式.【詳解】據題意,得,得,所以當時,.分析知,函數在上為增函數.又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數的性質應用,側重考查數學抽象和數學運算的核心素養(yǎng).8、C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數形結合的思想和運算求解的能力,屬于基礎題.9、B【解析】分析:化簡已知復數z,由共軛復數的定義可得.詳解:化簡可得z=∴z的共軛復數為1﹣i.故選B.點睛:本題考查復數的代數形式的運算,涉及共軛復數,屬基礎題.10、C【解析】
根據給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.11、A【解析】
由余弦定理可得,結合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點睛】本題考查利用余弦定理解三角形,考查學生的基本計算能力,是一道容易題.12、C【解析】
利用復數的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復數的虛部為.故選:C.【點睛】本題考查復數的四則運算、虛部概念,考查運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用待定系數法求出冪函數的解析式,再求出的單調遞減區(qū)間.【詳解】解:冪函數的圖象經過點,則,解得;所以,其中;所以的單調遞減區(qū)間為.故答案為:.【點睛】本題考查了冪函數的圖象與性質的應用問題,屬于基礎題.14、【解析】
由自變量所在定義域范圍,代入對應解析式,再由對數加減法運算法則與對數恒等式關系分別求值再相加,即為答案.【詳解】因為函數,則因為,則故故答案為:【點睛】本題考查分段函數求值,屬于簡單題.15、【解析】
求出向量的坐標,然后利用向量數量積的坐標運算可計算出結果.【詳解】,,,因此,.故答案為:.【點睛】本題考查平面向量數量積的坐標運算,考查計算能力,屬于基礎題.16、【解析】
先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數列的通項公式即可得出;(2)利用“錯位相減法”、等比數列的前項和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設數列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項公式為an=n+1.(2)設的前n項和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點:等差數列的性質;數列的求和.【方法點晴】本題主要考查了等差數列的通項公式、“錯位相減法”、等比數列的前項和公式、一元二次方程的解法等知識點的綜合應用,解答中方程的兩根為,由題意得,即可求解數列的通項公式,進而利用錯位相減法求和是解答的關鍵,著重考查了學生的推理能力與運算能力,屬于中檔試題.18、(1)(2)32【解析】
利用絕對值不等式的解法求出不等式的解集,得到關于的方程,求出的值即可;由知可得,,利用三個正數的基本不等式,構造和是定值即可求出的最大值.【詳解】(1)∵,,所以不等式的解集為,即為不等式的解集為,∴的解集為,即不等式的解集為,化簡可得,不等式的解集為,所以,即.(2)∵,∴.又∵,,,∴,當且僅當,等號成立,即,,時,等號成立,∴的最大值為32.【點睛】本題主要考查含有兩個絕對值不等式的解法和三個正數的基本不等式的靈活運用;其中利用構造出和為定值即為定值是求解本題的關鍵;基本不等式取最值的條件:一正二定三相等是本題的易錯點;屬于中檔題.19、(1);(2)詳見解析.【解析】
(1)由短軸長可知,設,,由設而不求法作差即可求得,將相應值代入即求得,橢圓方程可求;(2)考慮特殊位置,即直線與軸垂直時候,成立,當直線斜率存在時,設出直線方程,與橢圓聯立,結合中點坐標公式,弦長公式,得到與的關系,將表示出來,結合基本不等式求最值,證明最后的結果【詳解】解:(1)由已知,得由,兩式相減,得根據已知條件有,當時,∴,即∴橢圓的標準方程為(2)當直線斜率不存在時,,不等式成立.當直線斜率存在時,設由得∴,∴由化簡,得∴令,則當且僅當時取等號∴∵∴當且僅當時取等號綜上,【點睛】本題為直線與橢圓的綜合應用,考查了橢圓方程的求法,點差法處理多未知量問題,能夠利用一元二次方程的知識轉化處理復雜的計算形式,要求學生計算能力過關,為較難題20、(1)(2)【解析】
(1)根據單調遞減可知導函數恒小于等于,采用參變分離的方法分離出,并將的部分構造成新函數,分析與最值之間的關系;(2)通過對的導函數分析,確定有唯一零點,則就是的極大值點也是最大值點,計算的值并利用進行化簡,從而確定.【詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調遞增,所以,所以.(2)當時,.則,令,則,所以在上單調遞減.由于,,所以存在滿足,即.當時,,;當時,,.所以在上單調遞增,在上單調遞減.所以,因為,所以,所以,所以.【點睛】(1)求函數中字母的范圍時,常用的方法有兩種:參變分離法、分類討論法;(2)當導函數不易求零點時,需要將導函數中某些部分拿出作單獨分析,以便先確定導函數的單調性從而確定導函數的零點所在區(qū)間,再分析整個函數的單調性,最后確定出函數的最值.21、(1);(2)【解析】
(1)由向量平行的坐標表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數為,根據的范圍可確定的范圍,結合正弦函數圖象可確定所求函數的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數性質的綜合應用問題;涉及到共線向量的坐標表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應用、正弦型函數值域的求解等知識.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理服務態(tài)度的改善方法
- 江蘇省啟東市長江中學2025屆高三下學期聯考化學試題含解析
- 四川省樂山市峨眉山市第二中學2025屆高考化學押題試卷含解析
- 2025屆內蒙古自治區(qū)烏海市烏達區(qū)高三第三次測評化學試卷含解析
- 湖南省邵陽市邵東第十中學2025屆高考化學全真模擬密押卷含解析
- 遼寧省沈陽名校2025屆高考壓軸卷化學試卷含解析
- 2025年熱壓硫化鋅(ZNS)晶體項目發(fā)展計劃
- 2025屆河南省平頂山市郟縣一中高三第一次調研測試化學試卷含解析
- TIA的護理常規(guī)和健康教育
- 2025年船舶配套業(yè)項目建議書
- 賣爆:爆款文案賣貨訓練手冊
- 中國女性生理健康白皮書
- 天花病毒教學課件
- 數據析及DPS數據處理系統(tǒng)講解學習
- 高一語文學法指導(絕對經典)課件
- 廢舊綜合材料手工(幼兒園)PPT完整全套教學課件
- 中班數學:蔬菜寶寶送回家 課件
- 07J902-3 醫(yī)療建筑(衛(wèi)生間、淋浴間、洗池)
- 基于BIM的莆田第25中教學樓項目招標造價管理
- 建設工程項目法律風險防控培訓稿PPT講座
- 焊接機械手說明書
評論
0/150
提交評論