廣東省廣州市南沙一中達(dá)標(biāo)名校2024屆中考沖刺卷數(shù)學(xué)試題含解析_第1頁(yè)
廣東省廣州市南沙一中達(dá)標(biāo)名校2024屆中考沖刺卷數(shù)學(xué)試題含解析_第2頁(yè)
廣東省廣州市南沙一中達(dá)標(biāo)名校2024屆中考沖刺卷數(shù)學(xué)試題含解析_第3頁(yè)
廣東省廣州市南沙一中達(dá)標(biāo)名校2024屆中考沖刺卷數(shù)學(xué)試題含解析_第4頁(yè)
廣東省廣州市南沙一中達(dá)標(biāo)名校2024屆中考沖刺卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省廣州市南沙一中達(dá)標(biāo)名校2024屆中考沖刺卷數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線y=kx+b與y=mx+n分別交x軸于點(diǎn)A(﹣1,0),B(4,0),則函數(shù)y=(kx+b)(mx+n)中,則不等式的解集為()A.x>2 B.0<x<4C.﹣1<x<4 D.x<﹣1或x>42.下列說(shuō)法中,正確的是()A.兩個(gè)全等三角形,一定是軸對(duì)稱(chēng)的B.兩個(gè)軸對(duì)稱(chēng)的三角形,一定是全等的C.三角形的一條中線把三角形分成以中線為軸對(duì)稱(chēng)的兩個(gè)圖形D.三角形的一條高把三角形分成以高線為軸對(duì)稱(chēng)的兩個(gè)圖形3.若一組數(shù)據(jù)2,3,,5,7的眾數(shù)為7,則這組數(shù)據(jù)的中位數(shù)為()A.2 B.3 C.5 D.74.如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),則函數(shù)y=ax2+(b-1)x+c的圖象可能是()A. B. C. D.5.小強(qiáng)是一位密碼編譯愛(ài)好者,在他的密碼手冊(cè)中,有這樣一條信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分別對(duì)應(yīng)下列六個(gè)字:昌、愛(ài)、我、宜、游、美,現(xiàn)將(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,結(jié)果呈現(xiàn)的密碼信息可能是()A.我愛(ài)美 B.宜晶游 C.愛(ài)我宜昌 D.美我宜昌6.點(diǎn)P(1,﹣2)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)7.把邊長(zhǎng)相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長(zhǎng)LG交AF于點(diǎn)P,則∠APG=()A.141° B.144° C.147° D.150°8.如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線交BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為()A. B. C. D.9.如圖,直角邊長(zhǎng)為的等腰直角三角形與邊長(zhǎng)為3的等邊三角形在同一水平線上,等腰直角三角形沿水平線從左向右勻速穿過(guò)等邊三角形時(shí),設(shè)穿過(guò)時(shí)間為t,兩圖形重合部分的面積為S,則S關(guān)于t的圖象大致為()A. B.C. D.10.下列各式計(jì)算正確的是()A.a(chǎn)4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a(chǎn)12÷a3=a4二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,已知直線與軸、軸相交于、兩點(diǎn),與的圖象相交于、兩點(diǎn),連接、.給出下列結(jié)論:①;②;③;④不等式的解集是或.其中正確結(jié)論的序號(hào)是__________.12.方程=1的解是_____.13.二十四節(jié)氣列入聯(lián)合國(guó)教科文組織人類(lèi)非物質(zhì)文化遺產(chǎn)代表作名錄.太陽(yáng)運(yùn)行的軌道是一個(gè)圓形,古人將之稱(chēng)作“黃道”,并把黃道分為24份,每15度就是一個(gè)節(jié)氣,統(tǒng)稱(chēng)“二十四節(jié)氣”.這一時(shí)間認(rèn)知體系被譽(yù)為“中國(guó)的第五大發(fā)明”.如圖,指針落在驚蟄、春分、清明區(qū)域的概率是_____.14.已知,是關(guān)于x的一元二次方程x2+(2m+3)x+m2=0的兩個(gè)不相等的實(shí)數(shù)根,且滿足=﹣1,則m的值是____.15.如下圖,在直徑AB的半圓O中,弦AC、BD相交于點(diǎn)E,EC=2,BE=1.則cos∠BEC=________.16.三人中有兩人性別相同的概率是_____________.三、解答題(共8題,共72分)17.(8分)在矩形ABCD中,AB=6,AD=8,點(diǎn)E是邊AD上一點(diǎn),EM⊥EC交AB于點(diǎn)M,點(diǎn)N在射線MB上,且AE是AM和AN的比例中項(xiàng).如圖1,求證:∠ANE=∠DCE;如圖2,當(dāng)點(diǎn)N在線段MB之間,聯(lián)結(jié)AC,且AC與NE互相垂直,求MN的長(zhǎng);連接AC,如果△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似,求DE的長(zhǎng).18.(8分)如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),連結(jié)AE、BD且AE=AB.求證:∠ABE=∠EAD;若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.19.(8分)如圖,在等腰直角△ABC中,∠C是直角,點(diǎn)A在直線MN上,過(guò)點(diǎn)C作CE⊥MN于點(diǎn)E,過(guò)點(diǎn)B作BF⊥MN于點(diǎn)F.(1)如圖1,當(dāng)C,B兩點(diǎn)均在直線MN的上方時(shí),①直接寫(xiě)出線段AE,BF與CE的數(shù)量關(guān)系.②猜測(cè)線段AF,BF與CE的數(shù)量關(guān)系,不必寫(xiě)出證明過(guò)程.(2)將等腰直角△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖2位置時(shí),線段AF,BF與CE又有怎樣的數(shù)量關(guān)系,請(qǐng)寫(xiě)出你的猜想,并寫(xiě)出證明過(guò)程.(3)將等腰直角△ABC繞著點(diǎn)A繼續(xù)旋轉(zhuǎn)至圖3位置時(shí),BF與AC交于點(diǎn)G,若AF=3,BF=7,直接寫(xiě)出FG的長(zhǎng)度.20.(8分)計(jì)算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣121.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對(duì)角線,直線AE與直線BF交于點(diǎn)H(1)觀察猜想如圖1,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當(dāng)四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時(shí),(1)中的結(jié)論是否仍然成立,并說(shuō)明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點(diǎn)C旋轉(zhuǎn),在整個(gè)旋轉(zhuǎn)過(guò)程中,當(dāng)A、E、F三點(diǎn)共線時(shí),請(qǐng)直接寫(xiě)出點(diǎn)B到直線AE的距離.22.(10分)(問(wèn)題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關(guān)系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點(diǎn)M,N.試猜想四邊形FMAN的形狀,并說(shuō)明理由;(解決問(wèn)題)(3)如圖(3)在正方形ABCD中,AB=2,以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請(qǐng)直接寫(xiě)出BD'平方的值.23.(12分)如圖1,的余切值為2,,點(diǎn)D是線段上的一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A、B重合),以點(diǎn)D為頂點(diǎn)的正方形的另兩個(gè)頂點(diǎn)E、F都在射線上,且點(diǎn)F在點(diǎn)E的右側(cè),聯(lián)結(jié),并延長(zhǎng),交射線于點(diǎn)P.(1)點(diǎn)D在運(yùn)動(dòng)時(shí),下列的線段和角中,________是始終保持不變的量(填序號(hào));①;②;③;④;⑤;⑥;(2)設(shè)正方形的邊長(zhǎng)為x,線段的長(zhǎng)為y,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出定義域;(3)如果與相似,但面積不相等,求此時(shí)正方形的邊長(zhǎng).24.如圖,一次函數(shù)y=﹣x+6的圖象分別交y軸、x軸交于點(diǎn)A、B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個(gè)單位的速度出發(fā),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.(1)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,若某一時(shí)刻,△OPA的面積為6,求此時(shí)P的坐標(biāo);(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),△AOP為等腰三角形?(只需寫(xiě)出t的值,無(wú)需解答過(guò)程)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

看兩函數(shù)交點(diǎn)坐標(biāo)之間的圖象所對(duì)應(yīng)的自變量的取值即可.【詳解】∵直線y1=kx+b與直線y2=mx+n分別交x軸于點(diǎn)A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集為﹣1<x<4,故選C.【點(diǎn)睛】本題主要考查一次函數(shù)和一元一次不等式,本題是借助一次函數(shù)的圖象解一元一次不等式,兩個(gè)圖象的“交點(diǎn)”是兩個(gè)函數(shù)值大小關(guān)系的“分界點(diǎn)”,在“分界點(diǎn)”處函數(shù)值的大小發(fā)生了改變.2、B【解析】根據(jù)軸對(duì)稱(chēng)圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.解:A.兩個(gè)全等三角形,一定是軸對(duì)稱(chēng)的錯(cuò)誤,三角形全等位置上不一定關(guān)于某一直線對(duì)稱(chēng),故本選項(xiàng)錯(cuò)誤;B.兩個(gè)軸對(duì)稱(chēng)的三角形,一定全等,正確;C.三角形的一條中線把三角形分成以中線為軸對(duì)稱(chēng)的兩個(gè)圖形,錯(cuò)誤;D.三角形的一條高把三角形分成以高線為軸對(duì)稱(chēng)的兩個(gè)圖形,錯(cuò)誤.故選B.3、C【解析】試題解析:∵這組數(shù)據(jù)的眾數(shù)為7,∴x=7,則這組數(shù)據(jù)按照從小到大的順序排列為:2,3,1,7,7,中位數(shù)為:1.故選C.考點(diǎn):眾數(shù);中位數(shù).4、A【解析】

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),得出方程ax2+(b-1)x+c=0有兩個(gè)不相等的根,進(jìn)而得出函數(shù)y=ax2+(b-1)x+c與x軸有兩個(gè)交點(diǎn),根據(jù)方程根與系數(shù)的關(guān)系得出函數(shù)y=ax2+(b-1)x+c的對(duì)稱(chēng)軸x=->0,即可進(jìn)行判斷.【詳解】點(diǎn)P在拋物線上,設(shè)點(diǎn)P(x,ax2+bx+c),又因點(diǎn)P在直線y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由圖象可知一次函數(shù)y=x與二次函數(shù)y=ax2+bx+c交于第一象限的P、Q兩點(diǎn),∴方程ax2+(b-1)x+c=0有兩個(gè)正實(shí)數(shù)根.∴函數(shù)y=ax2+(b-1)x+c與x軸有兩個(gè)交點(diǎn),又∵->0,a>0∴-=-+>0∴函數(shù)y=ax2+(b-1)x+c的對(duì)稱(chēng)軸x=->0,∴A符合條件,故選A.5、C【解析】試題分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因?yàn)閤﹣y,x+y,a+b,a﹣b四個(gè)代數(shù)式分別對(duì)應(yīng)愛(ài)、我,宜,昌,所以結(jié)果呈現(xiàn)的密碼信息可能是“愛(ài)我宜昌”,故答案選C.考點(diǎn):因式分解.6、C【解析】關(guān)于y軸對(duì)稱(chēng)的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),由此可得P(1,﹣2)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)是(﹣1,﹣2),故選C.【點(diǎn)睛】本題考查了關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo),正確地記住關(guān)于坐標(biāo)軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征是關(guān)鍵.關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特點(diǎn):縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù).7、B【解析】

先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個(gè)內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點(diǎn)睛】本題考查了多邊形內(nèi)角與外角,關(guān)鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).8、A【解析】試題解析:連接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四邊形AFOE,F(xiàn)BGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切線,∴DN=DE=3,MN=MG,∴CM=5-2-MN=3-MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3-NM)2+42,∴NM=,∴DM=3+=,故選B.考點(diǎn):1.切線的性質(zhì);3.矩形的性質(zhì).9、B【解析】

先根據(jù)等腰直角三角形斜邊為2,而等邊三角形的邊長(zhǎng)為3,可得等腰直角三角形沿水平線從左向右勻速穿過(guò)等邊三角形時(shí),出現(xiàn)等腰直角三角形完全處于等邊三角形內(nèi)部的情況,進(jìn)而得到S關(guān)于t的圖象的中間部分為水平的線段,再根據(jù)當(dāng)t=0時(shí),S=0,即可得到正確圖象【詳解】根據(jù)題意可得,等腰直角三角形斜邊為2,斜邊上的高為1,而等邊三角形的邊長(zhǎng)為3,高為,故等腰直角三角形沿水平線從左向右勻速穿過(guò)等邊三角形時(shí),出現(xiàn)等腰直角三角形完全處于等邊三角形內(nèi)部的情況,故兩圖形重合部分的面積先增大,然后不變,再減小,S關(guān)于t的圖象的中間部分為水平的線段,故A,D選項(xiàng)錯(cuò)誤;當(dāng)t=0時(shí),S=0,故C選項(xiàng)錯(cuò)誤,B選項(xiàng)正確;故選:B【點(diǎn)睛】本題考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖像,根據(jù)重復(fù)部分面積的變化是解題的關(guān)鍵10、C【解析】

根據(jù)同底數(shù)冪的乘法,可判斷A、B,根據(jù)冪的乘方,可判斷C,根據(jù)同底數(shù)冪的除法,可判斷D.【詳解】A.a(chǎn)4?a3=a7,故A錯(cuò)誤;B.3a?4a=12a2,故B錯(cuò)誤;C.(a3)4=a12,故C正確;D.a(chǎn)12÷a3=a9,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查了同底數(shù)冪的除法,同底數(shù)冪的除法底數(shù)不變指數(shù)相減是解題的關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、②③④【解析】分析:根據(jù)一次函數(shù)和反比例函數(shù)的性質(zhì)得到k1k2>0,故①錯(cuò)誤;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得到y(tǒng)=-mx-m,求得P(-1,0),Q(0,-m),根據(jù)三角形的面積公式即可得到S△AOP=S△BOQ;故③正確;根據(jù)圖象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正確.詳解:由圖象知,k1<0,k2<0,∴k1k2>0,故①錯(cuò)誤;把A(-2,m)、B(1,n)代入y=中得-2m=n,∴m+n=0,故②正確;把A(-2,m)、B(1,n)代入y=k1x+b得,∴,∵-2m=n,∴y=-mx-m,∵已知直線y=k1x+b與x軸、y軸相交于P、Q兩點(diǎn),∴P(-1,0),Q(0,-m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正確;由圖象知不等式k1x+b>的解集是x<-2或0<x<1,故④正確;故答案為:②③④.點(diǎn)睛:本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn),求兩直線的交點(diǎn)坐標(biāo),三角形面積的計(jì)算,正確的理解題意是解題的關(guān)鍵.12、x=3【解析】去分母得:x﹣1=2,解得:x=3,經(jīng)檢驗(yàn)x=3是分式方程的解,故答案為3.【點(diǎn)睛】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結(jié)果須代入最簡(jiǎn)公分母進(jìn)行檢驗(yàn),結(jié)果為零,則原方程無(wú)解;結(jié)果不為零,則為原方程的解.13、【解析】

首先由圖可得此轉(zhuǎn)盤(pán)被平分成了24等份,其中驚蟄、春分、清明區(qū)域有3份,然后利用概率公式求解即可求得答案.【詳解】∵如圖,此轉(zhuǎn)盤(pán)被平分成了24等份,其中驚蟄、春分、清明有3份,∴指針落在驚蟄、春分、清明的概率是:.故答案為【點(diǎn)睛】此題考查了概率公式的應(yīng)用.注意概率=所求情況數(shù)與總情況數(shù)之比.14、3.【解析】

可以先由韋達(dá)定理得出兩個(gè)關(guān)于、的式子,題目中的式子變形即可得出相應(yīng)的與韋達(dá)定理相關(guān)的式子,即可求解.【詳解】得+=-2m-3,=m2,又因?yàn)?,所以m2-2m-3=0,得m=3或m=-1,因?yàn)橐辉畏匠痰膬蓚€(gè)不相等的實(shí)數(shù)根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,綜上m=3.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式相結(jié)合解題是解決本題的關(guān)鍵.15、【解析】分析:連接BC,則∠BCE=90°,由余弦的定義求解.詳解:連接BC,根據(jù)圓周角定理得,∠BCE=90°,所以cos∠BEC=.故答案為.點(diǎn)睛:本題考查了圓周角定理的余弦的定義,求一個(gè)銳角的余弦時(shí),需要把這個(gè)銳角放到直角三角形中,再根據(jù)余弦的定義求解,而圓中直徑所對(duì)的圓周角是直角.16、1【解析】分析:由題意和生活實(shí)際可知:“三個(gè)人中,至少有兩個(gè)人的性別是相同的”即可得到所求概率為1.詳解:∵三人的性別存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性別是“2男1女”;(4)三人的性別是“2女1男”,∴三人中至少有兩個(gè)人的性別是相同的,∴P(三人中有二人性別相同)=1.點(diǎn)睛:列出本題中所有的等可能結(jié)果是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)見(jiàn)解析;(2);(1)DE的長(zhǎng)分別為或1.【解析】

(1)由比例中項(xiàng)知,據(jù)此可證△AME∽△AEN得∠AEM=∠ANE,再證∠AEM=∠DCE可得答案;(2)先證∠ANE=∠EAC,結(jié)合∠ANE=∠DCE得∠DCE=∠EAC,從而知,據(jù)此求得AE=8﹣=,由(1)得∠AEM=∠DCE,據(jù)此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA兩種情況分別求解可得.【詳解】解:(1)∵AE是AM和AN的比例中項(xiàng)∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC與NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,當(dāng)△AEC與以點(diǎn)E、M、N為頂點(diǎn)所組成的三角形相似時(shí)①∠ENM=∠EAC,如圖2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如圖1,過(guò)點(diǎn)E作EH⊥AC,垂足為點(diǎn)H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,設(shè)DE=1x,則HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,綜上所述,DE的長(zhǎng)分別為或1.【點(diǎn)睛】本題是相似三角形的綜合問(wèn)題,解題的關(guān)鍵是掌握相似三角形的判定與性質(zhì)、三角函數(shù)的應(yīng)用等知識(shí)點(diǎn).18、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】

(1)根據(jù)平行四邊形的對(duì)邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠AEB=∠EAD,根據(jù)等邊對(duì)等角可得∠ABE=∠AEB,即可得證.(2)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對(duì)等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可.【詳解】證明:(1)∵在平行四邊形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.19、(1)①AE+BF=EC;②AF+BF=2CE;(2)AF﹣BF=2CE,證明見(jiàn)解析;(3)FG=.【解析】

(1)①只要證明△ACE≌△BCD(AAS),推出AE=BD,CE=CD,推出四邊形CEFD為正方形,即可解決問(wèn)題;②利用①中結(jié)論即可解決問(wèn)題;(2)首先證明BF-AF=2CE.由AF=3,BF=7,推出CE=EF=2,AE=AF+EF=5,由FG∥EC,可知,由此即可解決問(wèn)題;【詳解】解:(1)證明:①如圖1,過(guò)點(diǎn)C做CD⊥BF,交FB的延長(zhǎng)線于點(diǎn)D,∵CE⊥MN,CD⊥BF,∴∠CEA=∠D=90°,∵CE⊥MN,CD⊥BF,BF⊥MN,∴四邊形CEFD為矩形,∴∠ECD=90°,又∵∠ACB=90°,∴∠ACB-∠ECB=∠ECD-∠ECB,即∠ACE=∠BCD,又∵△ABC為等腰直角三角形,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,又∵四邊形CEFD為矩形,∴四邊形CEFD為正方形,∴CE=EF=DF=CD,∴AE+BF=DB+BF=DF=EC.②由①可知:AF+BF=AE+EF+BF=BD+EF+BF=DF+EF=2CE,(2)AF-BF=2CE圖2中,過(guò)點(diǎn)C作CG⊥BF,交BF延長(zhǎng)線于點(diǎn)G,∵AC=BC可得∠AEC=∠CGB,∠ACE=∠BCG,在△CBG和△CAE中,,∴△CBG≌△CAE(AAS),∴AE=BG,∵AF=AE+EF,∴AF=BG+CE=BF+FG+CE=2CE+BF,∴AF-BF=2CE;(3)如圖3,過(guò)點(diǎn)C做CD⊥BF,交FB的于點(diǎn)D,∵AC=BC可得∠AEC=∠CDB,∠ACE=∠BCD,在△CBD和△CAE中,,∴△CBD≌△CAE(AAS),∴AE=BD,∵AF=AE-EF,∴AF=BD-CE=BF-FD-CE=BF-2CE,∴BF-AF=2CE.∵AF=3,BF=7,∴CE=EF=2,AE=AF+EF=5,∵FG∥EC,∴,∴,∴FG=.【點(diǎn)睛】本題考查幾何變換綜合題、正方形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、平行線分線段成比例定理、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題.20、1【解析】

根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪的運(yùn)算法則、負(fù)整數(shù)指數(shù)冪的運(yùn)算法則、絕對(duì)值的性質(zhì)進(jìn)行化簡(jiǎn),計(jì)算即可.【詳解】原式=1×+3﹣+1﹣1=1.【點(diǎn)睛】此題主要考查了實(shí)數(shù)的運(yùn)算,要熟練掌握,解答此題的關(guān)鍵是要明確:在進(jìn)行實(shí)數(shù)運(yùn)算時(shí),和有理數(shù)運(yùn)算一樣,要從高級(jí)到低級(jí),即先算乘方、開(kāi)方,再算乘除,最后算加減,有括號(hào)的要先算括號(hào)里面的,同級(jí)運(yùn)算要按照從左到右的順序進(jìn)行.另外,有理數(shù)的運(yùn)算律在實(shí)數(shù)范圍內(nèi)仍然適用.21、(1),45°;(2)不成立,理由見(jiàn)解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因?yàn)椤螩BA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因?yàn)椤螩BA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因?yàn)锳、E、F三點(diǎn)共線,及∠AFB=30°,∠AFC=90°,進(jìn)而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點(diǎn)共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當(dāng)A、E、F三點(diǎn)共線時(shí),點(diǎn)B到直線AE的距離為.【點(diǎn)睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點(diǎn)共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類(lèi)討論三點(diǎn)共線問(wèn)題是解題的關(guān)鍵.本題屬于中等偏難.22、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見(jiàn)解析;(3)16+8或16﹣8【解析】

(1)依據(jù)點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進(jìn)而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點(diǎn)A在線段BD的垂直平分線上,點(diǎn)C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點(diǎn)F為斜邊BC的中點(diǎn),∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD逆時(shí)針旋轉(zhuǎn)60°,如圖所示:過(guò)D'作D'E⊥AB,交BA的延長(zhǎng)線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點(diǎn)A為旋轉(zhuǎn)中心將正方形ABCD順時(shí)針旋轉(zhuǎn)60°,如圖所示:過(guò)B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長(zhǎng)度為16+8或16﹣8.【點(diǎn)睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運(yùn)用,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進(jìn)行計(jì)算求解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論