河北省望都中學(xué)2023-2024學(xué)年高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第1頁
河北省望都中學(xué)2023-2024學(xué)年高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第2頁
河北省望都中學(xué)2023-2024學(xué)年高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第3頁
河北省望都中學(xué)2023-2024學(xué)年高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第4頁
河北省望都中學(xué)2023-2024學(xué)年高三下學(xué)期聯(lián)考數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北省望都中學(xué)2023-2024學(xué)年高三下學(xué)期聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的左,右焦點(diǎn)分別為、,過的直線l交雙曲線的右支于點(diǎn)P,以雙曲線的實(shí)軸為直徑的圓與直線l相切,切點(diǎn)為H,若,則雙曲線C的離心率為()A. B. C. D.2.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.73.已知函數(shù)在上都存在導(dǎo)函數(shù),對(duì)于任意的實(shí)數(shù)都有,當(dāng)時(shí),,若,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知全集,集合,則()A. B. C. D.5.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動(dòng)點(diǎn),為軸上的動(dòng)點(diǎn),則的最大值是()A. B.9 C.7 D.6.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.7.的展開式中的系數(shù)為()A.-30 B.-40 C.40 D.508.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.39.圓錐底面半徑為,高為,是一條母線,點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線的距離的最大值是()A. B. C. D.10.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個(gè)內(nèi)角,則的大小關(guān)系是()A. B.C. D.以上情況均有可能11.設(shè)復(fù)數(shù),則=()A.1 B. C. D.12.已知的展開式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知,如果函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是____________14.設(shè)隨機(jī)變量服從正態(tài)分布,若,則的值是______.15.農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時(shí)期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.16.利用等面積法可以推導(dǎo)出在邊長為a的正三角形內(nèi)任意一點(diǎn)到三邊的距離之和為定值,類比上述結(jié)論,利用等體積法進(jìn)行推導(dǎo),在棱長為a的正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和也為定值,則這個(gè)定值是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長為.(1)求橢圓的方程;(2)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說明理由.18.(12分)已知的內(nèi)角的對(duì)邊分別為,且滿足.(1)求角的大??;(2)若的面積為,求的周長的最小值.19.(12分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點(diǎn).求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.20.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點(diǎn).(1)求證:;(2)求直線與平面所成角的正弦值.21.(12分)過點(diǎn)作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點(diǎn).(1)寫出曲線C的一般方程;(2)求的最小值.22.(10分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若不等式恒成立,求實(shí)數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算問題,處理雙曲線離心率問題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.2、D【解析】

利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==【點(diǎn)睛】本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.3、B【解析】

先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【詳解】令,則當(dāng)時(shí),,又,所以為偶函數(shù),從而等價(jià)于,因此選B.【點(diǎn)睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.4、D【解析】

根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.5、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對(duì)稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對(duì)稱性,求出所求式子的最大值.6、D【解析】

設(shè)圓錐的母線長為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.7、C【解析】

先寫出的通項(xiàng)公式,再根據(jù)的產(chǎn)生過程,即可求得.【詳解】對(duì)二項(xiàng)式,其通項(xiàng)公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【點(diǎn)睛】本題考查二項(xiàng)展開式中某一項(xiàng)系數(shù)的求解,關(guān)鍵是對(duì)通項(xiàng)公式的熟練使用,屬基礎(chǔ)題.8、A【解析】

分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長度相關(guān)的最值問題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來求解.9、C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.10、B【解析】

由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對(duì)稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較.【詳解】由可得,即函數(shù)的周期,因?yàn)樵趨^(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對(duì)稱性可知,在上單調(diào)遞增,因?yàn)?,是銳角三角形的兩個(gè)內(nèi)角,所以且即,所以即,.故選:.【點(diǎn)睛】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.11、A【解析】

根據(jù)復(fù)數(shù)的除法運(yùn)算,代入化簡即可求解.【詳解】復(fù)數(shù),則故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算與化簡求值,屬于基礎(chǔ)題.12、A【解析】

先求的展開式,再分類分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開式的常數(shù)項(xiàng),從而求出的值.【詳解】展開式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開式中的系數(shù)問題,其中對(duì)所取的項(xiàng)要進(jìn)行分類討論,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

首先把零點(diǎn)問題轉(zhuǎn)化為方程問題,等價(jià)于有三個(gè)零點(diǎn),兩側(cè)開方,可得,即有三個(gè)零點(diǎn),再運(yùn)用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個(gè)零點(diǎn),即零點(diǎn)有,顯然,則有,可得,即有三個(gè)零點(diǎn),不妨令,對(duì)于,函數(shù)單調(diào)遞增,,,所以函數(shù)在區(qū)間上只有一解,對(duì)于函數(shù),,解得,,解得,,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當(dāng)時(shí),,當(dāng)時(shí),,此時(shí)函數(shù)若有兩個(gè)零點(diǎn),則有,綜上可知,若函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)的零點(diǎn),恰當(dāng)?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點(diǎn)問題,注意恰有三個(gè)零點(diǎn)條件的應(yīng)用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.14、1【解析】

由題得,解不等式得解.【詳解】因?yàn)?,所以,所以c=1.故答案為1【點(diǎn)睛】本題主要考查正態(tài)分布的圖像和性質(zhì),意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.15、【解析】

(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對(duì)稱性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個(gè)三角形面積是,由對(duì)稱性可知該六面是由兩個(gè)正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對(duì)稱性得,小球的體積要達(dá)到最大,即球與六個(gè)面都相切時(shí),由于圖像的對(duì)稱性,內(nèi)部的小球要是體積最大,就是球要和六個(gè)面相切,連接球心和五個(gè)頂點(diǎn),把六面體分成了六個(gè)三棱錐設(shè)球的半徑為,所以,所以球的體積.故答案為:;.【點(diǎn)睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計(jì)算,考查邏輯推理能力和空間想象能力求解球的體積關(guān)鍵是判斷在什么情況下,其體積達(dá)到最大,考查運(yùn)算求解能力.16、【解析】

計(jì)算正四面體的高,并計(jì)算該正四面體的體積,利用等體積法,可得結(jié)果.【詳解】作平面,為的重心如圖則,所以設(shè)正四面體內(nèi)任意一點(diǎn)到四個(gè)面的距離之和為則故答案為:【點(diǎn)睛】本題考查類比推理的應(yīng)用,還考查等體積法,考驗(yàn)理解能力以及計(jì)算能力,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(I)結(jié)合離心率,得到a,b,c的關(guān)系,計(jì)算A的坐標(biāo),計(jì)算切線與橢圓交點(diǎn)坐標(biāo),代入橢圓方程,計(jì)算參數(shù),即可.(II)分切線斜率存在與不存在討論,設(shè)出M,N的坐標(biāo),設(shè)出切線方程,結(jié)合圓心到切線距離公式,得到m,k的關(guān)系式,將直線方程代入橢圓方程,利用根與系數(shù)關(guān)系,表示,結(jié)合三角形相似,證明結(jié)論,即可.【詳解】(Ⅰ)設(shè)橢圓的半焦距為,由橢圓的離心率為知,,∴橢圓的方程可設(shè)為.易求得,∴點(diǎn)在橢圓上,∴,解得,∴橢圓的方程為.(Ⅱ)當(dāng)過點(diǎn)且與圓相切的切線斜率不存在時(shí),不妨設(shè)切線方程為,由(Ⅰ)知,,,∴.當(dāng)過點(diǎn)且與圓相切的切線斜率存在時(shí),可設(shè)切線的方程為,,∴,即.聯(lián)立直線和橢圓的方程得,∴,得.∵,∴,,∴.綜上所述,圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),都有.在中,由與相似得,為定值.【點(diǎn)睛】本道題考查了橢圓方程的求解,考查了直線與橢圓位置關(guān)系,考查了向量的坐標(biāo)運(yùn)算,難度偏難.18、(1)(2)【解析】

(1)因?yàn)?,所以,由余弦定理得,化簡得,可得,解得,又因?yàn)?,所?(6分)(2)因?yàn)?,所以,則(當(dāng)且僅當(dāng)時(shí),取等號(hào)).由(1)得(當(dāng)且僅當(dāng)時(shí),取等號(hào)),解得.所以(當(dāng)且僅當(dāng)時(shí),取等號(hào)),所以的周長的最小值為.19、(1)詳見解析;(2)詳見解析.【解析】

(1)利用平行四邊形的方法,證明平面.(2)通過證明平面,由此證得.【詳解】(1)設(shè)是中點(diǎn),連接,由于是中點(diǎn),所以且,而且,所以與平行且相等,所以四邊形是平行四邊形,所以,由于平面,平面,所以平面.(2)連接,由于直三棱柱中,而,,所以平面,所以,由于,所以.由于四邊形是矩形且,所以四邊形是正方形,所以,由于,所以平面,所以.【點(diǎn)睛】本小題主要考查線面平行的證明,考查線面垂直的證明,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)證明見解析(2)【解析】

(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因?yàn)椋?,所以四邊形為菱形,而平面,?因?yàn)?,故,故,即四邊形為正方形,?(2)依題意,.在正方形中,,故以為原點(diǎn),所在直線分別為、、軸,建立如圖所示的空間直角坐標(biāo)系;如圖所示:不紡設(shè),則,又因?yàn)?,所?所以.設(shè)平面的法向量為,則,即,令,則.于是.又因?yàn)?,設(shè)直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查空間線面的位置關(guān)系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.21、(1);(2).【解析】

(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個(gè)關(guān)于的一元二次方程,根據(jù),結(jié)合韋達(dá)定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為.(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的參數(shù)方程代入曲線,得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論