![2023-2024學年日喀則市重點中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第1頁](http://file4.renrendoc.com/view3/M02/3C/00/wKhkFmYnmFyASJQ7AAHNRiGIFxw699.jpg)
![2023-2024學年日喀則市重點中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第2頁](http://file4.renrendoc.com/view3/M02/3C/00/wKhkFmYnmFyASJQ7AAHNRiGIFxw6992.jpg)
![2023-2024學年日喀則市重點中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第3頁](http://file4.renrendoc.com/view3/M02/3C/00/wKhkFmYnmFyASJQ7AAHNRiGIFxw6993.jpg)
![2023-2024學年日喀則市重點中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第4頁](http://file4.renrendoc.com/view3/M02/3C/00/wKhkFmYnmFyASJQ7AAHNRiGIFxw6994.jpg)
![2023-2024學年日喀則市重點中學初中數(shù)學畢業(yè)考試模擬沖刺卷含解析_第5頁](http://file4.renrendoc.com/view3/M02/3C/00/wKhkFmYnmFyASJQ7AAHNRiGIFxw6995.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年日喀則市重點中學初中數(shù)學畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,則下列結(jié)論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個 B.2個 C.3個 D.42.在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機摸出一個,摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.33.矩形具有而平行四邊形不具有的性質(zhì)是()A.對角相等 B.對角線互相平分C.對角線相等 D.對邊相等4.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標系中的大致圖象是()A. B. C. D.5.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.256.下列運算不正確的是A.a(chǎn)5+C.2a27.如圖,已知點A(1,0),B(0,2),以AB為邊在第一象限內(nèi)作正方形ABCD,直線CD與y軸交于點G,再以DG為邊在第一象限內(nèi)作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過點E,則k的值是()(A)33(B)34(C)35(D)368.據(jù)資料顯示,地球的海洋面積約為360000000平方千米,請用科學記數(shù)法表示地球海洋面積面積約為多少平方千米()A. B. C. D.9.下列圖形是幾家通訊公司的標志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.10.下列計算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a611.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.12.如圖,,,則的大小是A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知二次函數(shù)的圖象如圖所示,若方程有兩個不相等的實數(shù)根,則的取值范圍是_____________.14.閱讀下面材料:在數(shù)學課上,老師提出利用尺規(guī)作圖完成下面問題:已知:∠ACB是△ABC的一個內(nèi)角.求作:∠APB=∠ACB.小明的做法如下:如圖①作線段AB的垂直平分線m;②作線段BC的垂直平分線n,與直線m交于點O;③以點O為圓心,OA為半徑作△ABC的外接圓;④在弧ACB上取一點P,連結(jié)AP,BP.所以∠APB=∠ACB.老師說:“小明的作法正確.”請回答:(1)點O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;(2)∠APB=∠ACB的依據(jù)是_____.15.一元二次方程2x2﹣3x﹣4=0根的判別式的值等于_____.16.如圖,已知O為△ABC內(nèi)一點,點D、E分別在邊AB和AC上,且,DE∥BC,設(shè)、,那么______(用、表示).17.每年農(nóng)歷五月初五為端午節(jié),中國民間歷來有端午節(jié)吃粽子、賽龍舟的習俗.某班同學為了更好地了解某社區(qū)居民對鮮肉粽(A)豆沙粽(B)小棗粽(C)蛋黃粽(D)的喜愛情況,對該社區(qū)居民進行了隨機抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).分析圖中信息,本次抽樣調(diào)查中喜愛小棗粽的人數(shù)為________;若該社區(qū)有10000人,估計愛吃鮮肉粽的人數(shù)約為________.18.如圖,某校根據(jù)學生上學方式的一次抽樣調(diào)查結(jié)果,繪制出一個未完成的扇形統(tǒng)計圖,若該校共有學生1500人,則據(jù)此估計步行的有_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)在等邊△ABC外側(cè)作直線AM,點C關(guān)于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數(shù);(2)如圖2,當∠MAC=30°時,判斷線段BE與DE之間的數(shù)量關(guān)系,并加以證明;(3)若0°<∠MAC<120°,當線段DE=2BE時,直接寫出∠MAC的度數(shù).20.(6分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.21.(6分)車輛經(jīng)過潤揚大橋收費站時,4個收費通道A.B、C、D中,可隨機選擇其中的一個通過.一輛車經(jīng)過此收費站時,選擇A通道通過的概率是;求兩輛車經(jīng)過此收費站時,選擇不同通道通過的概率.22.(8分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.23.(8分)為了解某市市民“綠色出行”方式的情況,某校數(shù)學興趣小組以問卷調(diào)查的形式,隨機調(diào)查了某市部分出行市民的主要出行方式(參與問卷調(diào)查的市民都只從以下五個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.種類ABCDE出行方式共享單車步行公交車的士私家車根據(jù)以上信息,回答下列問題:(1)參與本次問卷調(diào)查的市民共有人,其中選擇B類的人數(shù)有人;(2)在扇形統(tǒng)計圖中,求A類對應(yīng)扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).24.(10分)聲音在空氣中傳播的速度y(m/s)是氣溫x(℃)的一次函數(shù),下表列出了一組不同氣溫的音速:氣溫x(℃)05101520音速y(m/s)331334337340343(1)求y與x之間的函數(shù)關(guān)系式:(2)氣溫x=23℃時,某人看到煙花燃放5s后才聽到聲響,那么此人與煙花燃放地約相距多遠?25.(10分)如圖,已知反比例函數(shù)y=k1x與一次函數(shù)y=k2x+b的圖象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面積;若M(x1,y1),N(x2,y2)是反比例函數(shù)y=k1x的圖象上的兩點,且x1<x2,y26.(12分)如圖,在中,,是邊上的高線,平分交于點,經(jīng)過,兩點的交于點,交于點,為的直徑.(1)求證:是的切線;(2)當,時,求的半徑.27.(12分)如圖,已知∠AOB與點M、N求作一點P,使點P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
由拋物線的開口方向判斷a與1的關(guān)系,由拋物線與y軸的交點判斷c與1的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①拋物線與y軸交于負半軸,則c<1,故①正確;②對稱軸x1,則2a+b=1.故②正確;③由圖可知:當x=1時,y=a+b+c<1.故③錯誤;④由圖可知:拋物線與x軸有兩個不同的交點,則b2﹣4ac>1.故④錯誤.綜上所述:正確的結(jié)論有2個.故選B.【點睛】本題考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的值求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.2、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.3、C【解析】試題分析:舉出矩形和平行四邊形的所有性質(zhì),找出矩形具有而平行四邊形不具有的性質(zhì)即可.解:矩形的性質(zhì)有:①矩形的對邊相等且平行,②矩形的對角相等,且都是直角,③矩形的對角線互相平分、相等;平行四邊形的性質(zhì)有:①平行四邊形的對邊分別相等且平行,②平行四邊形的對角分別相等,③平行四邊形的對角線互相平分;∴矩形具有而平行四邊形不一定具有的性質(zhì)是對角線相等,故選C.4、D【解析】
根據(jù)拋物線和直線的關(guān)系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應(yīng)在二、四象限,一次函數(shù)過原點,應(yīng)在二、四象限.故選D【點睛】考核知識點:反比例函數(shù)圖象.5、C【解析】
先根據(jù)三角形三條邊的關(guān)系求出第三條邊的取值范圍,進而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關(guān)系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.6、B【解析】(-2a7、D【解析】試題分析:過點E作EM⊥OA,垂足為M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;故選D.考點:反比例函數(shù)綜合題.8、B【解析】分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).詳解:將360000000用科學記數(shù)法表示為:3.6×1.故選:B.點睛:此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【點睛】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.10、D【解析】各項計算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D11、C【解析】
連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質(zhì)求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.12、D【解析】
依據(jù),即可得到,再根據(jù),即可得到.【詳解】解:如圖,,,又,,故選:D.【點睛】本題主要考查了平行線的性質(zhì),兩直線平行,同位角相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:先移項,整理為一元二次方程,讓根的判別式大于0求值即可.詳解:由圖象可知:二次函數(shù)y=ax2+bx+c的頂點坐標為(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有兩個不相等的實數(shù)根,∴方程ax2+bx+c-k=0的判別式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵拋物線開口向下∴a<0∴1-k>0∴k<1.故答案為k<1.點睛:本題主要考查了拋物線與x軸的交點問題,以及數(shù)形結(jié)合法;二次函數(shù)中當b2-4ac>0時,二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點.14、①線段垂直平分線上的點與這條線段兩個端點的距離相等;②等量代換同弧所對的圓周角相等【解析】
(1)根據(jù)線段的垂直平分線的性質(zhì)定理以及等量代換即可得出結(jié)論.
(2)根據(jù)同弧所對的圓周角相等即可得出結(jié)論.【詳解】(1)如圖2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(線段垂直平分線上的點與這條線段兩個端點的距離相等),∴OA=OB=OC(等量代換)故答案是:(2)∵,∴∠APB=∠ACB(同弧所對的圓周角相等).故答案是:(1)線段垂直平分線上的點與這條線段兩個端點的距離相等和等量代換;(2)同弧所對的圓周角相等.【點睛】考查作圖-復雜作圖、線段的垂直平分線的性質(zhì)、三角形的外心等知識,解題的關(guān)鍵是熟練掌握三角形外心的性質(zhì).15、41【解析】
已知一元二次方程的根判別式為△=b2﹣4ac,代入計算即可求解.【詳解】依題意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判別式為:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案為:41【點睛】本題考查了一元二次方程的根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2﹣4ac是解決問題的關(guān)鍵.16、【解析】
根據(jù),DE∥BC,結(jié)合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點睛】本題考查的知識點是平面向量,解題的關(guān)鍵是熟練的掌握平面向量.17、120人,3000人【解析】
根據(jù)B的人數(shù)除以占的百分比得到調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)減去A、B、D的人數(shù)得到本次抽樣調(diào)查中喜愛小棗粽的人數(shù);利用該社區(qū)的總?cè)藬?shù)×愛吃鮮肉粽的人數(shù)所占的百分比得出結(jié)果.【詳解】調(diào)查的總?cè)藬?shù)為:60÷10%=600(人),本次抽樣調(diào)查中喜愛小棗粽的人數(shù)為:600﹣180﹣60﹣240=120(人);若該社區(qū)有10000人,估計愛吃鮮肉粽的人數(shù)約為:100003000(人).故答案為120人;3000人.【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。部疾榱死脴颖竟烙嬁傮w.18、1【解析】
∵騎車的學生所占的百分比是×100%=35%,∴步行的學生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若該校共有學生1500人,則據(jù)此估計步行的有1500×40%=1(人),故答案為1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】
(1)根據(jù)軸對稱作出圖形,先判斷出∠ABD=∠ADB=y(tǒng),再利用三角形的內(nèi)角和得出x+y即可得出結(jié)論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結(jié)論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結(jié)論.【詳解】(1)補全圖形如圖1所示,根據(jù)軸對稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y(tǒng).在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時,沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質(zhì),軸對稱的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,作出圖形是解本題的關(guān)鍵.20、(1)見解析;(2)70°;(3)1.【解析】
(1)先根據(jù)等邊對等角得出∠B=∠D,即可得出結(jié)論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結(jié)論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結(jié)論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內(nèi)接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據(jù)勾股定理得,AB=,∴OA=OC=AB=,∵點C是的中點,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點睛】本題是幾何綜合題,涉及了圓的性質(zhì),圓周角定理,勾股定理,銳角三角函數(shù),相似三角形的判定和性質(zhì),圓內(nèi)接四邊形的性質(zhì),等腰三角形的性質(zhì)等,綜合性較強,有一定的難度,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.本題中求出BE=2也是解題的關(guān)鍵.21、(1);(2).【解析】試題分析:(1)根據(jù)概率公式即可得到結(jié)論;(2)畫出樹狀圖即可得到結(jié)論.試題解析:(1)選擇A通道通過的概率=,故答案為;(2)設(shè)兩輛車為甲,乙,如圖,兩輛車經(jīng)過此收費站時,會有16種可能的結(jié)果,其中選擇不同通道通過的有12種結(jié)果,∴選擇不同通道通過的概率==.22、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;
(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;
(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應(yīng)用:(1)證明:如圖2,
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
DA=EA,∠DAB=∠EAC,AB=AC,
∴△DAB≌△EAC,
(2)結(jié)論:CD=AD+BD.
理由:如圖2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD?cos30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD=.
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.
∵四邊形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等邊三角形,
∴BA=BD=BC,
∵E、C關(guān)于BM對稱,
∴BC=BE=BD=BA,F(xiàn)E=FC,
∴A、D、E、C四點共圓,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等邊三角形,
(4)∵AE=4,EC=EF=1,
∴AH=HE=2,F(xiàn)H=3,
在Rt△BHF中,∵∠BFH=30°,
∴=cos30°,
∴BF=.23、(1)800,240;(2)補圖見解析;(3)9.6萬人.【解析】試題分析:(1)由C類別人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)乘以B類別百分比即可得;(2)根據(jù)百分比之和為1求得A類別百分比,再乘以360°和總?cè)藬?shù)可分別求得;(3)總?cè)藬?shù)乘以樣本中A、B、C三類別百分比之和可得答案.試題解析:(1)本次調(diào)查的市民有200÷25%=800(人),∴B類別的人數(shù)為800×30%=240(人),故答案為800,240;(2)∵A類人數(shù)所占百分比為1﹣(30%+25%+14%+6%)=25%,∴A類對應(yīng)扇形圓心角α的度數(shù)為360°×25%=90°,A類的人數(shù)為800×25%=200(人),補全條形圖如下:(3)12×(25%+30%+25%)=9.6(萬人),答:估計該市“綠色出行”方式的人數(shù)約為9.6萬人.考點:1、條形統(tǒng)計圖;2、用樣本估計總體;3、統(tǒng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學二年級口算題之一
- 五年級口算競賽題
- 店鋪出租合同范本
- 小區(qū)弱電合同范本
- 2025年度車位物業(yè)管理與社區(qū)老年活動中心服務(wù)合同
- 2025年度智能小區(qū)物業(yè)與業(yè)主服務(wù)合同模板范文
- 二零二五年度離婚后子女撫養(yǎng)費及教育支持協(xié)議
- 國際科技合作項目專題合作協(xié)議書范本
- 2025年度電影音樂創(chuàng)作與制作聘用合同
- 二零二五年度環(huán)保監(jiān)測與治理服務(wù)團隊聘用協(xié)議
- 二年級看圖寫話看圖寫話素材
- 政務(wù)服務(wù)一網(wǎng)通辦平臺解決方案
- 2022年垃圾焚燒發(fā)電項目可行性研究報告
- 無菌技術(shù)操作-PPT課件
- JTT888-2020公共汽車類型劃分及等級評定_(高清-最新)
- 某天然氣公司場站設(shè)備管理制度
- T_CHES 22-2018 渡槽安全評價導則
- 汶川地震災(zāi)后恢復重建生產(chǎn)力布局和產(chǎn)業(yè)調(diào)整專項規(guī)劃
- 教師專業(yè)發(fā)展與職業(yè)生涯規(guī)劃優(yōu)秀課件
- 深化內(nèi)部改革轉(zhuǎn)換經(jīng)營機制強推內(nèi)部市場機制管理
- 稅務(wù)師事務(wù)所收費標準
評論
0/150
提交評論