版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省無錫市級名校2024年中考數(shù)學最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在一張考卷上,小華寫下如下結論,記正確的個數(shù)是m,錯誤的個數(shù)是n,你認為有公共頂點且相等的兩個角是對頂角若,則它們互余A.4 B. C. D.2.如圖,將繞直角頂點順時針旋轉,得到,連接,若,則的度數(shù)是()A. B. C. D.3.如圖是一組有規(guī)律的圖案,它們是由邊長相同的小正方形組成的,其中部分小正方形涂有陰影,依此規(guī)律,第2018個圖案中涂有陰影的小正方形個數(shù)為()A.8073 B.8072 C.8071 D.80704.函數(shù)在同一直角坐標系內(nèi)的圖象大致是()A. B. C. D.5.五個新籃球的質量(單位:克)分別是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正數(shù)表示超過標準質量的克數(shù),負數(shù)表示不足標準質量的克數(shù).僅從輕重的角度看,最接近標準的籃球的質量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+56.|–|的倒數(shù)是()A.–2 B.– C. D.27.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,8.計算4×(–9)的結果等于A.32 B.–32 C.36 D.–369.下列計算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)2+a2=a3 D.a(chǎn)6÷a2=a310.已知一次函數(shù)y=kx+3和y=k1x+5,假設k<0且k1>0,則這兩個一次函數(shù)的圖像的交點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是()A.a(chǎn)>b>cB.一次函數(shù)y=ax+c的圖象不經(jīng)第四象限C.m(am+b)+b<a(m是任意實數(shù))D.3b+2c>012.如圖,A、B為⊙O上兩點,D為弧AB的中點,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,則的值為()A.3 B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.二次根式中字母x的取值范圍是_____.14.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結論的個數(shù)是______.15.在實數(shù)范圍內(nèi)分解因式:x2y﹣2y=_____.16.如果拋物線y=(k﹣2)x2+k的開口向上,那么k的取值范圍是_____.17.如圖所示:在平面直角坐標系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.18.如圖,在四邊形ABCD中,,AC、BD相交于點E,若,則______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規(guī)在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)20.(6分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.21.(6分)已知一次函數(shù)y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點,點C在拋物線上且橫坐標為1.(1)寫出拋物線的函數(shù)表達式;(2)判斷△ABC的形狀,并證明你的結論;(3)平面內(nèi)是否存在點Q在直線AB、BC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標,如果不存在,說說你的理由.22.(8分)如圖,在平面直角坐標系中,A為y軸正半軸上一點,過點A作x軸的平行線,交函數(shù)的圖象于B點,交函數(shù)的圖象于C,過C作y軸和平行線交BO的延長線于D.(1)如果點A的坐標為(0,2),求線段AB與線段CA的長度之比;(2)如果點A的坐標為(0,a),求線段AB與線段CA的長度之比;(3)在(1)條件下,四邊形AODC的面積為多少?23.(8分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數(shù)量關系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點C旋轉,在整個旋轉過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.24.(10分)如圖,矩形ABCD中,O是AC與BD的交點,過O點的直線EF與AB、CD的延長線分別交于E、F.(1)證明:△BOE≌△DOF;(2)當EF⊥AC時,求證四邊形AECF是菱形.25.(10分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長.26.(12分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經(jīng)過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.27.(12分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:接受問卷調(diào)查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統(tǒng)計圖;若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數(shù).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
首先判斷出四個結論的錯誤個數(shù)和正確個數(shù),進而可得m、n的值,再計算出即可.【詳解】解:有公共頂點且相等的兩個角是對頂角,錯誤;
,正確;
,錯誤;
若,則它們互余,錯誤;
則,,
,
故選D.【點睛】此題主要考查了二次根式的乘除、對頂角、科學記數(shù)法、余角和負整數(shù)指數(shù)冪,關鍵是正確確定m、n的值.2、B【解析】
根據(jù)旋轉的性質可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據(jù)等腰直角三角形的性質可得∠CAA′=45°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠A′B′C,最后根據(jù)旋轉的性質可得∠B=∠A′B′C.【詳解】解:∵Rt△ABC繞直角頂點C順時針旋轉90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故選B.【點睛】本題考查了旋轉的性質,等腰直角三角形的判定與性質,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質,熟記各性質并準確識圖是解題的關鍵.3、A【解析】
觀察圖形可知第1個、第2個、第3個圖案中涂有陰影的小正方形的個數(shù),易歸納出第n個圖案中涂有陰影的小正方形個數(shù)為:4n+1,由此求解即可.【詳解】解:觀察圖形的變化可知:第1個圖案中涂有陰影的小正方形個數(shù)為:5=4×1+1;第2個圖案中涂有陰影的小正方形個數(shù)為:9=4×2+1;第3個圖案中涂有陰影的小正方形個數(shù)為:13=4×3+1;…發(fā)現(xiàn)規(guī)律:第n個圖案中涂有陰影的小正方形個數(shù)為:4n+1;∴第2018個圖案中涂有陰影的小正方形個數(shù)為:4n+1=4×2018+1=1.故選:A.【點睛】本題考查了圖形的變化規(guī)律,根據(jù)已有圖形確定其變化規(guī)律是解題的關鍵.4、C【解析】
根據(jù)a、b的符號,針對二次函數(shù)、一次函數(shù)的圖象位置,開口方向,分類討論,逐一排除.【詳解】當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象經(jīng)過一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數(shù)的圖象可知,對稱軸x=->0,且a>0,則b<0,但B中,一次函數(shù)a>0,b>0,排除B.故選C.5、B【解析】
求它們的絕對值,比較大小,絕對值小的最接近標準的籃球的質量.【詳解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近標準的籃球的質量是-0.6,故選B.【點睛】本題考查了正數(shù)和負數(shù),掌握正數(shù)和負數(shù)的定義以及意義是解題的關鍵.6、D【解析】
根據(jù)絕對值的性質,可化簡絕對值,根據(jù)倒數(shù)的意義,可得答案.【詳解】|?|=,的倒數(shù)是2;∴|?|的倒數(shù)是2,故選D.【點睛】本題考查了實數(shù)的性質,分子分母交換位置是求一個數(shù)倒數(shù)的關鍵.7、A【解析】
首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關鍵.8、D【解析】
根據(jù)有理數(shù)的乘法法則進行計算即可.【詳解】故選:D.【點睛】考查有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘.9、B【解析】試題解析:A.故錯誤.B.正確.C.不是同類項,不能合并,故錯誤.D.故選B.點睛:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.10、B【解析】
依題意在同一坐標系內(nèi)畫出圖像即可判斷.【詳解】根據(jù)題意可作兩函數(shù)圖像,由圖像知交點在第二象限,故選B.【點睛】此題主要考查一次函數(shù)的圖像,解題的關鍵是根據(jù)題意作出相應的圖像.11、D【解析】解:A.由二次函數(shù)的圖象開口向上可得a>0,由拋物線與y軸交于x軸下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,則b>a>c,故此選項錯誤;B.∵a>0,c<0,∴一次函數(shù)y=ax+c的圖象經(jīng)一、三、四象限,故此選項錯誤;C.當x=﹣1時,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此選項錯誤;D.由圖象可知x=1,a+b+c>0①,∵對稱軸x=﹣1,當x=1,y>0,∴當x=﹣3時,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故選項正確;故選D.點睛:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關系,二次函數(shù)與方程之間的轉換,會利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根據(jù)圖象判斷其值.12、C【解析】
連接D為弧AB的中點,根據(jù)弧,弦的關系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,根據(jù)全等三角形的性質可得:即根據(jù)等腰三角形的性質可得:設則即可求出的值.【詳解】如圖:連接D為弧AB的中點,根據(jù)弧,弦的關系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,即根據(jù)等腰三角形的性質可得:設則故選C.【點睛】考查弧,弦之間的關系,全等三角形的判定與性質,等腰三角形的性質,銳角三角函數(shù)等,綜合性比較強,關鍵是構造全等三角形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≤1【解析】
二次根式有意義的條件就是被開方數(shù)是非負數(shù),即可求解.【詳解】根據(jù)題意得:1﹣x≥0,解得x≤1.故答案為:x≤1【點睛】主要考查了二次根式的意義和性質.性質:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.14、①②③④.【解析】
由正方形的性質得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;
證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;
由等腰直角三角形的性質和矩形的性質得出∠ABC=∠ABF=45°,③正確;
證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正確;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,F(xiàn)G⊥CA,
∴FG∥BC,
∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正確;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD?FE=AD2=FQ?AC,④正確;
故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、正方形的性質、矩形的判定與性質、等腰直角三角形的性質;熟練掌握正方形的性質,證明三角形全等和三角形相似是解決問題的關鍵.15、y(x+)(x﹣)【解析】
先提取公因式y(tǒng)后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點睛】本題考查實數(shù)范圍內(nèi)的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內(nèi)進行因式分解的式子的結果一般要分到出現(xiàn)無理數(shù)為止.16、k>2【解析】
根據(jù)二次函數(shù)的性質可知,當拋物線開口向上時,二次項系數(shù)k﹣2>1.【詳解】因為拋物線y=(k﹣2)x2+k的開口向上,所以k﹣2>1,即k>2,故答案為k>2.【點睛】本題考查二次函數(shù),解題的關鍵是熟練運用二次函數(shù)的圖象與性質,本題屬于中等題型.17、1+【解析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點評:此題主要考查了圓周角定理及解直角三角形的綜合應用能力,能夠正確的構建出與已知和所求相關的直角三角形是解答此題的關鍵.18、【解析】
利用相似三角形的性質即可求解;【詳解】解:∵AB∥CD,∴△AEB∽△CED,∴,∴,故答案為.【點睛】本題考查相似三角形的性質和判定,解題的關鍵是熟練掌握相似三角形的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析【解析】
三角形的面積相等即同底等高,所以以BC為兩個三角形的公共底邊,在AC邊上尋找到與D到BC距離相等的點即可.【詳解】作∠CDP=∠BCD,PD與AC的交點即P.【點睛】本題考查了三角形面積的靈活計算,還可以利用三角形的全等來進行解題.20、(4)4;(2);(4)點E的坐標為(4,2)、(,)、(4,2).【解析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運用三角函數(shù)求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進而可求出BR.在Rt△ORB中運用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運用相似三角形的性質及三角函數(shù)等知識建立關于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點D與點H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當∠BDE=90°時,點D在直線PE上,如圖2.此時DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點E的坐標為(4,2).②當∠BED=90°時,如圖4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴點E的坐標為().③當∠DBE=90°時,如圖4.此時PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.則有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四邊形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴點E的坐標為(4,2).綜上所述:當以B、D、E為頂點的三角形是直角三角形時點E的坐標為(4,2)、()、(4,2).點睛:本題考查了圓周角定理、切線的性質、相似三角形的判定與性質、三角函數(shù)的定義、平行線分線段成比例、矩形的判定與性質、勾股定理等知識,還考查了分類討論的數(shù)學思想,有一定的綜合性.21、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【解析】
(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計算出AC=10,根據(jù)直角三角形內(nèi)切圓半徑的計算公式得到Rt△ABC的內(nèi)切圓的半徑=2,設△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線,BI⊥y軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據(jù)角平分線的性質可判斷點P、I、Q、G到直線AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數(shù)法求出直線AI的解析式為y=2x﹣7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標即可.【詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當x=1時,y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內(nèi)切圓的半徑=,設△ABC的內(nèi)心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內(nèi)心,∴AI、BI為角平分線,∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,∴點I、P、Q、G為△ABC的內(nèi)角平分線或外角平分線的交點,它們到直線AB、BC、AC距離相等,BI=×2=4,而BI⊥y軸,∴I(4,1),設直線AI的解析式為y=kx+n,則,解得,∴直線AI的解析式為y=2x﹣7,當x=0時,y=2x﹣7=﹣7,則G(0,﹣7);設直線AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線AP的解析式為y=﹣x+13,當y=1時,﹣x+13=1,則P(24,1)當x=0時,y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、角平分線的性質和三角形內(nèi)心的性質;會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質是解題的關鍵.22、(1)線段AB與線段CA的長度之比為;(2)線段AB與線段CA的長度之比為;(3)1.【解析】試題分析:(1)由題意把y=2代入兩個反比例函數(shù)的解析式即可求得點B、C的橫坐標,從而得到AB、AC的長,即可得到線段AB與AC的比值;(2)由題意把y=a代入兩個反比例函數(shù)的解析式即可求得用“a”表示的點B、C的橫坐標,從而可得到AB、AC的長,即可得到線段AB與AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行線分線段成比例定理即可求得CD的長,從而可由梯形的面積公式求出四邊形AODC的面積.試題解析:(1)∵A(0,2),BC∥x軸,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴線段AB與線段CA的長度之比為;(2)∵B是函數(shù)y=﹣(x<0)的一點,C是函數(shù)y=(x>0)的一點,∴B(﹣,a),C(,a),∴AB=,CA=,∴線段AB與線段CA的長度之比為;(3)∵=,∴=,又∵OA=a,CD∥y軸,∴,∴CD=4a,∴四邊形AODC的面積為=(a+4a)×=1.23、(1),45°;(2)不成立,理由見解析;(3).【解析】
(1)由正方形的性質,可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當A、E、F三點共線時,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當A、E、F三點共線時,同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當A、E、F三點共線時,點B到直線AE的距離為.【點睛】本題考察正方形的性質和矩形的性質以及三點共線,熟練掌握正方形的性質和矩形的性質,知道分類討論三點共線問題是解題的關鍵.本題屬于中等偏難.24、(1)(2)證明見解析【解析】
(1)根據(jù)矩形的性質,通過“角角邊”證明三角形全等即可;(2)根據(jù)題意和(1)可得AC與EF互相垂直平分,所以四邊形AECF是菱形.【詳解】(1)證明:∵四邊形ABCD是矩形,∴OB=OD,AE∥CF,∴∠E=∠F(兩直線平行,內(nèi)錯角相等),在△BOE與△DOF中,,∴△BOE≌△DOF(AAS).(2)證明:∵四邊形ABCD是矩形,∴OA=OC,又∵由(1)△BOE≌△DOF得,OE=OF,∴四邊形AECF是平行四邊形,又∵EF⊥AC,∴四邊形AECF是菱形.25、(1)詳見解析;(2)【解析】
(1)根據(jù)正方形的性質和等腰直角三角形的性質以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質和四邊形周長解答即可.【詳解】(1)證明:∵四邊形A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025民辦幼兒園教師聘用合同書范本
- 2025監(jiān)理工程師《合同管理》考點合同生效時間的規(guī)定
- 二零二五年度醫(yī)療項目項目經(jīng)理委托合同3篇
- 二零二五年度互聯(lián)網(wǎng)金融服務公司股權及業(yè)務轉讓合同3篇
- 2025年度紙裝修設計創(chuàng)新技術應用合同3篇
- 2025年度企業(yè)財務分析與稅務籌劃咨詢服務合同2篇
- 2025年度醫(yī)療機構與執(zhí)業(yè)藥師簽訂的藥品質量追溯體系合作協(xié)議3篇
- 2025年度展臺搭建與展會現(xiàn)場布置合同3篇
- 二零二五年度軌道交通設備維修保養(yǎng)協(xié)議3篇
- 2025年度養(yǎng)殖技術培訓與推廣合作合同3篇
- 冶煉煙氣制酸工藝設計規(guī)范
- 《上帝擲骰子嗎:量子物理史話》超星爾雅學習通章節(jié)測試答案
- Unit13 同步教學設計2023-2024學年人教版九年級英語全冊
- 2023-2024學年河北省保定市滿城區(qū)八年級(上)期末英語試卷
- 2024成都中考數(shù)學第一輪專題復習之專題四 幾何動態(tài)探究題 教學課件
- 2024合同范本之太平洋保險合同條款
- 萬用表的使用
- TDT1062-2021《社區(qū)生活圈規(guī)劃技術指南》
- GB/T 12959-2024水泥水化熱測定方法
- 《商務禮儀》試題及答案大全
- 《核電廠焊接材料評定與驗收標準》
評論
0/150
提交評論