2023-2024學(xué)年安徽省合肥市瑤海區(qū)部分校十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
2023-2024學(xué)年安徽省合肥市瑤海區(qū)部分校十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
2023-2024學(xué)年安徽省合肥市瑤海區(qū)部分校十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
2023-2024學(xué)年安徽省合肥市瑤海區(qū)部分校十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
2023-2024學(xué)年安徽省合肥市瑤海區(qū)部分校十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年安徽省合肥市瑤海區(qū)部分校十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知點(diǎn)為某封閉圖形邊界上一定點(diǎn),動點(diǎn)從點(diǎn)出發(fā),沿其邊界順時針勻速運(yùn)動一周.設(shè)點(diǎn)運(yùn)動的時間為,線段的長為.表示與的函數(shù)關(guān)系的圖象大致如右圖所示,則該封閉圖形可能是()A. B. C. D.2.如圖,正六邊形ABCDEF中,P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?()A.1 B.2 C.2﹣2 D.4﹣23.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質(zhì)地等完全相同,在看不到球的條件下,隨機(jī)地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球4.x=1是關(guān)于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.15.如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對稱軸上一點(diǎn),則OP+AP的最小值為().A.3 B. C. D.6.下列說法正確的是()A.負(fù)數(shù)沒有倒數(shù)B.﹣1的倒數(shù)是﹣1C.任何有理數(shù)都有倒數(shù)D.正數(shù)的倒數(shù)比自身小7.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.8.運(yùn)用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.9.下列四個不等式組中,解集在數(shù)軸上表示如圖所示的是()A. B. C. D.10.下列實(shí)數(shù)中,最小的數(shù)是()A. B. C.0 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知扇形的圓心角為120°,弧長為6π,則扇形的面積是_____.12.如圖,在△ABC中,∠ACB=90°,AC=BC=3,將△ABC折疊,使點(diǎn)A落在BC邊上的點(diǎn)D處,EF為折痕,若AE=2,則sin∠BFD的值為_____.13.如圖,正方形ABCD中,E是BC邊上一點(diǎn),以E為圓心,EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則sin∠EAB的值為.14.如圖,已知∠A+∠C=180°,∠APM=118°,則∠CQN=_____°.15.甲乙兩人8次射擊的成績?nèi)鐖D所示(單位:環(huán))根據(jù)圖中的信息判斷,這8次射擊中成績比較穩(wěn)定的是______(填“甲”或“乙”)16.袋中裝有6個黑球和n個白球,經(jīng)過若干次試驗(yàn),發(fā)現(xiàn)“若從袋中任摸出一個球,恰是黑球的概率為”,則這個袋中白球大約有_____個.三、解答題(共8題,共72分)17.(8分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點(diǎn)D′未到達(dá)點(diǎn)B時,A′C′交CD于E,D′C′交CB于點(diǎn)F,連接EF,當(dāng)四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.18.(8分)據(jù)某省商務(wù)廳最新消息,2018年第一季度該省企業(yè)對“一帶一路”沿線國家的投資額為10億美元,第三季度的投資額增加到了14.4億美元.求該省第二、三季度投資額的平均增長率.19.(8分)如圖,在中,,點(diǎn)在上運(yùn)動,點(diǎn)在上,始終保持與相等,的垂直平分線交于點(diǎn),交于,判斷與的位置關(guān)系,并說明理由;若,,,求線段的長.20.(8分)(1)計算:﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=1.21.(8分)如圖,某校準(zhǔn)備給長12米,寬8米的矩形室內(nèi)場地進(jìn)行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點(diǎn)為矩形和菱形的對稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設(shè)米.甲乙丙單價(元/米2)(1)當(dāng)時,求區(qū)域Ⅱ的面積.計劃在區(qū)域Ⅰ,Ⅱ分別鋪設(shè)甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設(shè)丙款白色瓷磚,①在相同光照條件下,當(dāng)場地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當(dāng)為多少時,室內(nèi)光線亮度最好,并求此時白色區(qū)域的面積.②三種瓷磚的單價列表如下,均為正整數(shù),若當(dāng)米時,購買三款瓷磚的總費(fèi)用最少,且最少費(fèi)用為7200元,此時__________,__________.22.(10分)一個不透明的口袋中裝有2個紅球、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.23.(12分)小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的作法是這樣的:如圖:(1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;(2)利用兩個三角板,分別過點(diǎn)M,N畫OM,ON的垂線,交點(diǎn)為P;(3)畫射線OP.則射線OP為∠AOB的平分線.請寫出小林的畫法的依據(jù)______.24.如圖,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)實(shí)踐操作:尺規(guī)作圖,不寫作法,保留作圖痕跡.①作∠ABC的角平分線交AC于點(diǎn)D.②作線段BD的垂直平分線,交AB于點(diǎn)E,交BC于點(diǎn)F,連接DE、DF.(2)推理計算:四邊形BFDE的面積為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

解:分析題中所給函數(shù)圖像,段,隨的增大而增大,長度與點(diǎn)的運(yùn)動時間成正比.段,逐漸減小,到達(dá)最小值時又逐漸增大,排除、選項(xiàng),段,逐漸減小直至為,排除選項(xiàng).故選.【點(diǎn)睛】本題考查了動點(diǎn)問題的函數(shù)圖象,函數(shù)圖象是典型的數(shù)形結(jié)合,圖象應(yīng)用信息廣泛,通過看圖獲取信息,不僅可以解決生活中的實(shí)際問題,還可以提高分析問題、解決問題的能力.用圖象解決問題時,要理清圖象的含義即會識圖.2、C【解析】

先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計算出PQ即可.【詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過點(diǎn)P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點(diǎn)P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【點(diǎn)睛】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點(diǎn),三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.3、A【解析】

根據(jù)必然事件的概念:在一定條件下,必然發(fā)生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機(jī)事件,選項(xiàng)錯誤;C、是隨機(jī)事件,選項(xiàng)錯誤;D、是隨機(jī)事件,選項(xiàng)錯誤.故選A.4、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點(diǎn):一元一次方程的解.5、A【解析】

連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點(diǎn)B,再利用配方法得到點(diǎn)A,得到OA的長度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線的性質(zhì)得到PO=PB,再根據(jù)兩點(diǎn)之間線段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因?yàn)锳P垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線時,PB+PH最短,而BC=AB=3,所以最小值為3.故選A.【點(diǎn)睛】本題考查的是二次函數(shù)的綜合運(yùn)用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.6、B【解析】

根據(jù)倒數(shù)的定義解答即可.【詳解】A、只有0沒有倒數(shù),該項(xiàng)錯誤;B、﹣1的倒數(shù)是﹣1,該項(xiàng)正確;C、0沒有倒數(shù),該項(xiàng)錯誤;D、小于1的正分?jǐn)?shù)的倒數(shù)大于1,1的倒數(shù)等于1,該項(xiàng)錯誤.故選B.【點(diǎn)睛】本題主要考查倒數(shù)的定義:兩個實(shí)數(shù)的乘積是1,則這兩個數(shù)互為倒數(shù),熟練掌握這個知識點(diǎn)是解答本題的關(guān)鍵.7、C【解析】

易證△DEF∽△DAB,△BEF∽△BCD,根據(jù)相似三角形的性質(zhì)可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點(diǎn)睛】本題考查了相似三角形的判定及性質(zhì)定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.8、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點(diǎn)睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關(guān)鍵.9、D【解析】

此題涉及的知識點(diǎn)是不等式組的表示方法,根據(jù)規(guī)律可得答案.【詳解】由解集在數(shù)軸上的表示可知,該不等式組為,故選D.【點(diǎn)睛】本題重點(diǎn)考查學(xué)生對于在數(shù)軸上表示不等式的解集的掌握程度,不等式組的解集的表示方法:大小小大取中間是解題關(guān)鍵.10、B【解析】

根據(jù)正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個負(fù)實(shí)數(shù)絕對值大的反而小,進(jìn)行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.【點(diǎn)睛】此題主要考查了比較實(shí)數(shù)的大小,要熟練掌握任意兩個實(shí)數(shù)比較大小的方法.(1)正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù),兩個負(fù)實(shí)數(shù)絕對值大的反而?。?)利用數(shù)軸也可以比較任意兩個實(shí)數(shù)的大小,即在數(shù)軸上表示的兩個實(shí)數(shù),右邊的總比左邊的大,在原點(diǎn)左側(cè),絕對值大的反而小.二、填空題(本大題共6個小題,每小題3分,共18分)11、27π【解析】試題分析:設(shè)扇形的半徑為r.則,解得r=9,∴扇形的面積==27π.故答案為27π.考點(diǎn):扇形面積的計算.12、【解析】分析:過點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得,;設(shè)AF=DF=x,則FG=,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值詳解:如圖所示,過點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;設(shè)AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案為.點(diǎn)睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運(yùn)用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識來解決問題.13、.【解析】試題分析:設(shè)正方形的邊長為y,EC=x,由題意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化簡得y=4x,∴sin∠EAB=.考點(diǎn):1.相切兩圓的性質(zhì);2.勾股定理;3.銳角三角函數(shù)的定義14、1【解析】

先根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行知AB∥CD,據(jù)此依據(jù)平行線性質(zhì)知∠APM=∠CQM=118°,由鄰補(bǔ)角定義可得答案.【詳解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案為:1.【點(diǎn)睛】本題主要考查平行線的判定與性質(zhì),解題的關(guān)鍵是掌握平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系.平行線的性質(zhì)是由平行關(guān)系來尋找角的數(shù)量關(guān)系.15、甲【解析】由圖表明乙這8次成績偏離平均數(shù)大,即波動大,而甲這8次成績,分布比較集中,各數(shù)據(jù)偏離平均小,方差小,則S2甲<S2乙,即兩人的成績更加穩(wěn)定的是甲.故答案為甲.16、1【解析】試題解析:∵袋中裝有6個黑球和n個白球,

∴袋中一共有球(6+n)個,

∵從中任摸一個球,恰好是黑球的概率為,

∴,

解得:n=1.

故答案為1.三、解答題(共8題,共72分)17、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當(dāng)四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當(dāng)四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點(diǎn):1.菱形的性質(zhì);2.全等三角形的判定;3.平移的性質(zhì).18、第二、三季度的平均增長率為20%.【解析】

設(shè)增長率為x,則第二季度的投資額為10(1+x)萬元,第三季度的投資額為10(1+x)2萬元,由第三季度投資額為10(1+x)2=14.4萬元建立方程求出其解即可.【詳解】設(shè)該省第二、三季度投資額的平均增長率為x,由題意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增長率為20%.【點(diǎn)睛】本題考查了增長率問題的數(shù)量關(guān)系的運(yùn)用,一元二次方程的解法的運(yùn)用,解答時根據(jù)第三季度投資額為10(1+x)2=14.4建立方程是關(guān)鍵.19、(1).理由見解析;(2).【解析】

(1)根據(jù)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質(zhì)得到,利用,得到,于是得到結(jié)論;

(2)連接PE,設(shè)DE=x,則EB=ED=x,CE=8-x,根據(jù)勾股定理即可得到結(jié)論.【詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設(shè),由(1)得,,又,,∵,∴,∴,解得,即.【點(diǎn)睛】本題考查了線段垂直平分線的性質(zhì),直角三角形的性質(zhì),勾股定理,正確的作出輔助線解題的關(guān)鍵.20、(1)-7;(2),.【解析】

(1)原式第一項(xiàng)利用算術(shù)平方根定義計算,第二項(xiàng)利用特殊角的三角函數(shù)值計算,第三項(xiàng)利用零指數(shù)冪法則計算,最后一項(xiàng)利用乘方的意義化簡,計算即可得到結(jié)果;

(2)原式第二項(xiàng)利用除法法則變形,約分后兩項(xiàng)通分并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,利用非負(fù)數(shù)的性質(zhì)求出x與y的值,代入計算即可求出值.【詳解】(1)原式=3?4×+1?9=?7;(2)原式=1?=1?==?;∵|x?2|+(2x?y?3)2=1,∴,解得:x=2,y=1,當(dāng)x=2,y=1時,原式=?.故答案為(1)-7;(2)?;?.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算、非負(fù)數(shù)的性質(zhì)與分式的化簡求值,解題的關(guān)鍵是熟練的掌握實(shí)數(shù)的運(yùn)算、非負(fù)數(shù)的性質(zhì)與分式的化簡求值的運(yùn)用.21、(1)8m2;(2)68m2;(3)40,8【解析】

(1)根據(jù)中心對稱圖形性質(zhì)和,,,可得,即可解當(dāng)時,4個全等直角三角形的面積;(2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含x的代數(shù)式表示出菱形和四個全等直角三角形的面積,列出含有x的解析式表示白色區(qū)域面積,并化成頂點(diǎn)式,根據(jù),,,求出自變量的取值范圍,再根據(jù)二次函數(shù)的增減性即可解答;(3)計算出x=2時各部分面積以及用含m、n的代數(shù)式表示出費(fèi)用,因?yàn)閙,n均為正整數(shù),解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當(dāng)時,,(2)∵,∴-,∵,,∴解不等式組得,∵,結(jié)合圖像,當(dāng)時,隨的增大而減小.∴當(dāng)時,取得最大值為(3)∵當(dāng)時,SⅠ=4x2=16m2,=12m2,=68m2,總費(fèi)用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因?yàn)閙,n均為正整數(shù),解得m=40,n=8.【點(diǎn)睛】本題考查中心對稱圖形性質(zhì),菱形、直角三角形的面積計算,二次函數(shù)的最值問題,解題關(guān)鍵是用含x的二次函數(shù)解析式表示出白色區(qū)面積.22、【解析】分析:列表得出所有等可能的情況數(shù),找出兩次都摸到紅球的情況數(shù),即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點(diǎn)睛:此題考查的是用列表法或樹狀圖法求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論