廣西欽州欽州港區(qū)六校聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第1頁
廣西欽州欽州港區(qū)六校聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第2頁
廣西欽州欽州港區(qū)六校聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第3頁
廣西欽州欽州港區(qū)六校聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第4頁
廣西欽州欽州港區(qū)六校聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西欽州欽州港區(qū)六校聯(lián)考2024屆中考數(shù)學(xué)全真模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若點(diǎn)A(1+m,1﹣n)與點(diǎn)B(﹣3,2)關(guān)于y軸對稱,則m+n的值是()A.﹣5B.﹣3C.3D.12.下列各式中,計(jì)算正確的是()A. B.C. D.3.函數(shù)y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣24.如圖,在平面直角坐標(biāo)系中,△ABC與△A1B1C1是以點(diǎn)P為位似中心的位似圖形,且頂點(diǎn)都在格點(diǎn)上,則點(diǎn)P的坐標(biāo)為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)5.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.6.小華和小紅到同一家鮮花店購買百合花與玫瑰花,他們購買的數(shù)量如下表所示,小華一共花的錢比小紅少8元,下列說法正確的是()百合花玫瑰花小華6支5支小紅8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元7.已知,用尺規(guī)作圖的方法在上確定一點(diǎn),使,則符合要求的作圖痕跡是()A. B.C. D.8.在下列交通標(biāo)志中,是中心對稱圖形的是()A. B.C. D.9.如圖,將矩形ABCD沿對角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為()A.31° B.28° C.62° D.56°10.已知:a、b是不等于0的實(shí)數(shù),2a=3b,那么下列等式中正確的是()A.a(chǎn)b=23 B.a(chǎn)二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AB是⊙O的直徑,AB=2,點(diǎn)C在⊙O上,∠CAB=30°,D為的中點(diǎn),P是直徑AB上一動點(diǎn),則PC+PD的最小值為________.12.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個圖案中陰影小三角形的個數(shù)是.13.如圖,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,點(diǎn)D、E分別為AM、AB上的動點(diǎn),則BD+DE的最小值是_____.14.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點(diǎn)E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.15.如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E、F分別是AB、AC、BC的中點(diǎn),若CD=5,則EF的長為________.16.如圖,直線與雙曲線(k≠0)相交于A(﹣1,)、B兩點(diǎn),在y軸上找一點(diǎn)P,當(dāng)PA+PB的值最小時,點(diǎn)P的坐標(biāo)為_________.17.如圖,等腰△ABC中,AB=AC=5,BC=8,點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個動點(diǎn),直線DE垂直平分BF,垂足為D.當(dāng)△ACF是直角三角形時,BD的長為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,對稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).(1)求拋物線解析式及頂點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)E(x,y)是拋物線上一動點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(3)①當(dāng)四邊形OEAF的面積為24時,請判斷OEAF是否為菱形?②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.19.(5分)在數(shù)學(xué)活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點(diǎn)在另一個三角尺的斜邊上移動,在這個運(yùn)動過程中,有哪些變量,能研究它們之間的關(guān)系嗎?小林選擇了其中一對變量,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對它們之間的關(guān)系進(jìn)行了探究.下面是小林的探究過程,請補(bǔ)充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點(diǎn),射線DE⊥BC于點(diǎn)E,∠EDF=60°,射線DF與射線AC交于點(diǎn)F.設(shè)B,E兩點(diǎn)間的距離為xcm,E,F(xiàn)兩點(diǎn)間的距離為ycm.(2)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補(bǔ)全表格時相關(guān)數(shù)據(jù)保留一位小數(shù))(3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF為等邊三角形時,BE的長度約為cm.20.(8分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點(diǎn)A(-1,2),B(m,-1).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)在x軸上是否存在點(diǎn)P(n,0),使△ABP為等腰三角形,請你直接寫出P點(diǎn)的坐標(biāo).21.(10分)關(guān)于x的一元二次方程x2﹣x﹣(m+2)=0有兩個不相等的實(shí)數(shù)根.求m的取值范圍;若m為符合條件的最小整數(shù),求此方程的根.22.(10分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.23.(12分)如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)坐標(biāo)是(8,6).求二次函數(shù)的解析式;求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo);二次函數(shù)的對稱軸上是否存在一點(diǎn)C,使得△CBD的周長最???若C點(diǎn)存在,求出C點(diǎn)的坐標(biāo);若C點(diǎn)不存在,請說明理由.24.(14分)x取哪些整數(shù)值時,不等式5x+2>3(x-1)與x≤2-x都成立?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】【分析】根據(jù)關(guān)于y軸的對稱點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變,據(jù)此求出m、n的值,代入計(jì)算可得.【詳解】∵點(diǎn)A(1+m,1﹣n)與點(diǎn)B(﹣3,2)關(guān)于y軸對稱,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故選D.【點(diǎn)睛】本題考查了關(guān)于y軸對稱的點(diǎn),熟練掌握關(guān)于y軸對稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變是解題的關(guān)鍵.2、C【解析】

接利用合并同類項(xiàng)法則以及積的乘方運(yùn)算法則、同底數(shù)冪的乘除運(yùn)算法則分別計(jì)算得出答案.【詳解】A、無法計(jì)算,故此選項(xiàng)錯誤;B、a2?a3=a5,故此選項(xiàng)錯誤;C、a3÷a2=a,正確;D、(a2b)2=a4b2,故此選項(xiàng)錯誤.故選C.【點(diǎn)睛】此題主要考查了合并同類項(xiàng)以及積的乘方運(yùn)算、同底數(shù)冪的乘除運(yùn)算,正確掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.3、D【解析】試題分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點(diǎn)睛:本題考查了函數(shù)中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關(guān)鍵.4、A【解析】

延長A1A、B1B和C1C,從而得到P點(diǎn)位置,從而可得到P點(diǎn)坐標(biāo).【詳解】如圖,點(diǎn)P的坐標(biāo)為(-4,-3).

故選A.【點(diǎn)睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點(diǎn)叫做位似中心.5、B【解析】選項(xiàng)中,由圖可知:在,;在,,∴,所以A錯誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以B正確;選項(xiàng)中,由圖可知:在,;在,,∴,所以C錯誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點(diǎn)睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標(biāo)系中的圖象情況,而這與“b”的取值無關(guān).6、A【解析】

設(shè)每支百合花x元,每支玫瑰花y元,根據(jù)總價=單價×購買數(shù)量結(jié)合小華一共花的錢比小紅少8元,即可得出關(guān)于x、y的二元一次方程,整理后即可得出結(jié)論.【詳解】設(shè)每支百合花x元,每支玫瑰花y元,根據(jù)題意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故選:A.【點(diǎn)睛】考查了二元一次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程是解題的關(guān)鍵.7、D【解析】試題分析:D選項(xiàng)中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點(diǎn):作圖—復(fù)雜作圖.8、C【解析】

解:A圖形不是中心對稱圖形;B不是中心對稱圖形;C是中心對稱圖形,也是軸對稱圖形;D是軸對稱圖形;不是中心對稱圖形故選C9、D【解析】

先利用互余計(jì)算出∠FDB=28°,再根據(jù)平行線的性質(zhì)得∠CBD=∠FDB=28°,接著根據(jù)折疊的性質(zhì)得∠FBD=∠CBD=28°,然后利用三角形外角性質(zhì)計(jì)算∠DFE的度數(shù).【詳解】解:∵四邊形ABCD為矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿對角線BD折疊,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯角相等.10、B【解析】∵2a=3b,∴ab=3故選B.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

作出D關(guān)于AB的對稱點(diǎn)D’,則PC+PD的最小值就是CD’的長度,在△COD'中根據(jù)邊角關(guān)系即可求解.【詳解】解:如圖:作出D關(guān)于AB的對稱點(diǎn)D’,連接OC,OD',CD'.又∵點(diǎn)C在⊙O上,∠CAB=30°,D為弧BC的中點(diǎn),即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點(diǎn)睛】本題考查了軸對稱-最短路線問題,勾股定理,垂徑定理,正確作出輔助線是解題的關(guān)鍵.12、4n﹣1.【解析】由圖可知:第一個圖案有陰影小三角形1個,第二圖案有陰影小三角形1+4=6個,第三個圖案有陰影小三角形1+8=11個,···那么第n個就有陰影小三角形1+4(n﹣1)=4n﹣1個.13、8【解析】試題分析:過B點(diǎn)作于點(diǎn),與交于點(diǎn),根據(jù)三角形兩邊之和小于第三邊,可知的最小值是線的長,根據(jù)勾股定理列出方程組即可求解.過B點(diǎn)作于點(diǎn),與交于點(diǎn),設(shè)AF=x,,,,(負(fù)值舍去).故BD+DE的值是8故答案為8考點(diǎn):軸對稱-最短路線問題.14、1【解析】

本題首先由等邊三角形的性質(zhì)及垂直定義得到∠DBE=60°,∠BEC=90°,再根據(jù)等腰三角形的性質(zhì)可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據(jù)三角形內(nèi)角和定理得出關(guān)系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結(jié)論.【詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.【點(diǎn)睛】本題主要考查等腰三角形的性質(zhì)及等邊三角形的性質(zhì)及垂直定義,解題的關(guān)鍵是根據(jù)三角形內(nèi)角和定理列出符合題意的簡易方程,從而求出結(jié)果.15、5【解析】

已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應(yīng)等于AB的一半.【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【點(diǎn)睛】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關(guān)鍵.16、(0,).【解析】試題分析:把點(diǎn)A坐標(biāo)代入y=x+4得a=3,即A(﹣1,3),把點(diǎn)A坐標(biāo)代入雙曲線的解析式得3=﹣k,即k=﹣3,聯(lián)立兩函數(shù)解析式得:,解得:,,即點(diǎn)B坐標(biāo)為:(﹣3,1),作出點(diǎn)A關(guān)于y軸的對稱點(diǎn)C,連接BC,與y軸的交點(diǎn)即為點(diǎn)P,使得PA+PB的值最小,則點(diǎn)C坐標(biāo)為:(1,3),設(shè)直線BC的解析式為:y=ax+b,把B、C的坐標(biāo)代入得:,解得:,所以函數(shù)解析式為:y=x+,則與y軸的交點(diǎn)為:(0,).考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題;軸對稱-最短路線問題.17、2或【解析】

分兩種情況討論:(1)當(dāng)時,,利用等腰三角形的三線合一性質(zhì)和垂直平分線的性質(zhì)可解;(2)當(dāng)時,過點(diǎn)A作于點(diǎn)M,證明列比例式求出,從而得,再利用垂直平分線的性質(zhì)得.【詳解】解:(1)當(dāng)時,∵垂直平分,.(2)當(dāng)時,過點(diǎn)A作于點(diǎn),在與中,.故答案為或.【點(diǎn)睛】本題主要考查了等腰三角形的三線合一性質(zhì)和線段垂直平分線的性質(zhì)定理得應(yīng)用.本題難度中等.三、解答題(共7小題,滿分69分)18、(1)拋物線解析式為,頂點(diǎn)為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】

(1)已知了拋物線的對稱軸解析式,可用頂點(diǎn)式二次函數(shù)通式來設(shè)拋物線,然后將A、B兩點(diǎn)坐標(biāo)代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點(diǎn)的橫坐標(biāo),用拋物線的解析式求出E點(diǎn)的縱坐標(biāo),那么E點(diǎn)縱坐標(biāo)的絕對值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關(guān)系式進(jìn)而可得出S與x的函數(shù)關(guān)系式.(3)①將S=24代入S,x的函數(shù)關(guān)系式中求出x的值,即可得出E點(diǎn)的坐標(biāo)和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應(yīng)該是等腰直角三角形,即E點(diǎn)的坐標(biāo)為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點(diǎn).【詳解】(1)由拋物線的對稱軸是,可設(shè)解析式為.把A、B兩點(diǎn)坐標(biāo)代入上式,得解之,得故拋物線解析式為,頂點(diǎn)為(2)∵點(diǎn)在拋物線上,位于第四象限,且坐標(biāo)適合,∴y<0,即-y>0,-y表示點(diǎn)E到OA的距離.∵OA是的對角線,∴.因?yàn)閽佄锞€與軸的兩個交點(diǎn)是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當(dāng)S=24時,即.化簡,得解之,得故所求的點(diǎn)E有兩個,分別為E1(3,-4),E2(4,-4).點(diǎn)E1(3,-4)滿足OE=AE,所以是菱形;點(diǎn)E2(4,-4)不滿足OE=AE,所以不是菱形.②當(dāng)OA⊥EF,且OA=EF時,是正方形,此時點(diǎn)E的坐標(biāo)只能是(3,-3).而坐標(biāo)為(3,-3)的點(diǎn)不在拋物線上,故不存在這樣的點(diǎn)E,使為正方形.19、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解析】

根據(jù)題意作圖測量即可.【詳解】(1)取點(diǎn)、畫圖、測量,得到數(shù)據(jù)為3.5故答案為:3.5(3)由數(shù)據(jù)得(4)當(dāng)△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點(diǎn)E,則BE=EF.即y=x所以,當(dāng)(1)中圖象與直線y=x相交時,交點(diǎn)橫坐標(biāo)即為BE的長,由作圖、測量可知x約為3.1.【點(diǎn)睛】本題為動點(diǎn)問題的函數(shù)圖象探究題,解得關(guān)鍵是按照題意畫圖測量,并將條件轉(zhuǎn)化成函數(shù)圖象研究.20、(1)反比例函數(shù)的解析式為;一次函數(shù)的解析式為y=-x+1;(2)滿足條件的P點(diǎn)的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】

(1)將A點(diǎn)代入求出k2,從而求出反比例函數(shù)方程,再聯(lián)立將B點(diǎn)代入即可求出一次函數(shù)方程.(2)令PA=PB,求出P.令A(yù)P=AB,求P.令BP=BA,求P.根據(jù)坐標(biāo)距離公式計(jì)算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數(shù)的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數(shù)的解析式為y=-x+1.(2)滿足條件的P點(diǎn)的坐標(biāo)為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點(diǎn)睛】本題考查一次函數(shù)圖像與性質(zhì)和反比例函數(shù)的圖像和性質(zhì),解題的關(guān)鍵是待定系數(shù)法,分三種情況討論.21、(1)m>;(2)x1=0,x2=1.【解析】

解答本題的關(guān)鍵是是掌握好一元二次方程的根的判別式.(1)求出△=5+4m>0即可求出m的取值范圍;(2)因?yàn)閙=﹣1為符合條件的最小整數(shù),把m=﹣1代入原方程求解即可.【詳解】解:(1)△=1+4(m+2)=9+4m>0∴.(2)∵為符合條件的最小整數(shù),∴m=﹣2.∴原方程變?yōu)椤鄕1=0,x2=1.考點(diǎn):1.解一元二次方程;2.根的判別式.22、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據(jù)OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據(jù)SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;

(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據(jù)sin∠BAC=,求出OM,根據(jù)cos∠BAC=,求出AM,根據(jù)垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點(diǎn)睛】考查了切線的性質(zhì)和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質(zhì),全等三角形的性質(zhì)和判定等知識點(diǎn)的運(yùn)用,通過做此題培養(yǎng)了學(xué)生的分析問題和解決問題的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論