




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省宣漢縣2024屆中考猜題數(shù)學(xué)試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.矩形ABCD的頂點坐標(biāo)分別為A(1,4)、B(1,1)、C(5,1),則點D的坐標(biāo)為()A.(5,5) B.(5,4) C.(6,4) D.(6,5)2.如圖,點A,B在反比例函數(shù)y=1x(x>0)的圖象上,點C,D在反比例函數(shù)y=A.4 B.3 C.2 D.33.碳納米管的硬度與金剛石相當(dāng),卻擁有良好的柔韌性,可以拉伸,我國某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學(xué)記數(shù)法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米4.如圖,矩形ABCD內(nèi)接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.5.為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖1所示,點E為矩形ABCD邊AD的中點,在矩形ABCD的四個頂點處都有定位儀,可監(jiān)測運動員的越野進(jìn)程,其中一位運動員P從點B出發(fā),沿著B﹣E﹣D的路線勻速行進(jìn),到達(dá)點D.設(shè)運動員P的運動時間為t,到監(jiān)測點的距離為y.現(xiàn)有y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這一信息的來源是()A.監(jiān)測點A B.監(jiān)測點B C.監(jiān)測點C D.監(jiān)測點D6.為迎接中考體育加試,小剛和小亮分別統(tǒng)計了自己最近10次跳繩比賽,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定程度的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差7.如圖,是由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,則拿掉這個小立方體木塊之后的幾何體的俯視圖是()A. B. C. D.8.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個數(shù),那么該幾何體的主視圖是()A. B. C. D.9.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.10.如圖,△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點D,E,F(xiàn),且AD=2,BC=5,則△ABC的周長為()A.16 B.14 C.12 D.1011.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.12.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點,則的長為()A.3 B.4 C. D.5二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為____.14.關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是▲.15.若正多邊形的一個內(nèi)角等于140°,則這個正多邊形的邊數(shù)是_______.16.請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分.A.如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,沿軸向右平移后得到,點的對應(yīng)點是直線上一點,則點與其對應(yīng)點間的距離為__________.B.比較__________的大?。?7.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發(fā),沿BC以2cm/s的速度向點C移動,點Q從點C出發(fā),以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發(fā),設(shè)運動時間為ts,當(dāng)t=__________時,△CPQ與△CBA相似.18.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,……,第n(n是正整數(shù))個圖案中的基礎(chǔ)圖形個數(shù)為_______(用含n的式子表示).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,在直角梯形ABCD中,AB⊥BC,AD∥BC,點P為DC上一點,且AP=AB,過點C作CE⊥BP交直線BP于E.(1)若ABBC=3(2)若AB=BC.①如圖2,當(dāng)點P與E重合時,求PDPC②如圖3,設(shè)∠DAP的平分線AF交直線BP于F,當(dāng)CE=1,PDPC20.(6分)在“優(yōu)秀傳統(tǒng)文化進(jìn)校園”活動中,學(xué)校計劃每周二下午第三節(jié)課時間開展此項活動,擬開展活動項目為:剪紙,武術(shù),書法,器樂,要求七年級學(xué)生人人參加,并且每人只能參加其中一項活動.教務(wù)處在該校七年級學(xué)生中隨機抽取了100名學(xué)生進(jìn)行調(diào)查,并對此進(jìn)行統(tǒng)計,繪制了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).請解答下列問題:請補全條形統(tǒng)計圖和扇形統(tǒng)計圖;在參加“剪紙”活動項目的學(xué)生中,男生所占的百分比是多少?若該校七年級學(xué)生共有500人,請估計其中參加“書法”項目活動的有多少人?學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?21.(6分)已知Rt△ABC,∠A=90°,BC=10,以BC為邊向下作矩形BCDE,連AE交BC于F.(1)如圖1,當(dāng)AB=AC,且sin∠BEF=時,求的值;(2)如圖2,當(dāng)tan∠ABC=時,過D作DH⊥AE于H,求的值;(3)如圖3,連AD交BC于G,當(dāng)時,求矩形BCDE的面積22.(8分)先化簡,然后從中選出一個合適的整數(shù)作為的值代入求值.23.(8分)解方程:x2-4x-5=024.(10分)列方程解應(yīng)用題:某景區(qū)一景點要限期完成,甲工程隊單獨做可提前一天完成,乙工程隊獨做要誤期6天,現(xiàn)由兩工程隊合做4天后,余下的由乙工程隊獨做,正好如期完成,則工程期限為多少天?25.(10分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數(shù)軸上.26.(12分)某學(xué)校要開展校園文化藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.請你根據(jù)圖中信息,回答下列問題:(1)求本次調(diào)查的學(xué)生人數(shù),并補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“歌曲”所在扇形的圓心角的度數(shù);(3)九年一班和九年二班各有2名學(xué)生擅長舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來自同一個班級的概率是多少?27.(12分)小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).如果小明第一題不使用“求助”,那么小明答對第一道題的概率是.如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
由矩形的性質(zhì)可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求點D坐標(biāo).【詳解】解:∵四邊形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y軸,AD∥BC∥x軸
∴點D坐標(biāo)為(5,4)
故選B.【點睛】本題考查了矩形的性質(zhì),坐標(biāo)與圖形性質(zhì),關(guān)鍵是熟練掌握這些性質(zhì).2、B【解析】
首先根據(jù)A,B兩點的橫坐標(biāo),求出A,B兩點的坐標(biāo),進(jìn)而根據(jù)AC//BD//y軸,及反比例函數(shù)圖像上的點的坐標(biāo)特點得出C,D兩點的坐標(biāo),從而得出AC,BD的長,根據(jù)三角形的面積公式表示出S△OAC,S△ABD的面積,再根據(jù)△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.【點睛】:此題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標(biāo)特征,熟練掌握反比例函數(shù)k的幾何意義是解本題的關(guān)鍵.3、D【解析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點睛:在負(fù)指數(shù)科學(xué)計數(shù)法中,其中,n等于第一個非0數(shù)字前所有0的個數(shù)(包括下數(shù)點前面的0).4、A【解析】
連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設(shè)DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結(jié)論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設(shè)DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【點睛】本題考查了圓周角定理與勾股定理,解題的關(guān)鍵是熟練的掌握圓周角定理與勾股定理的應(yīng)用.5、C【解析】試題解析:、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大先減少再增大.故選項錯誤;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大而增大,故選項錯誤;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大先減小再增大,然后再減小,選項正確;、由監(jiān)測點監(jiān)測時,函數(shù)值隨的增大而減小,選項錯誤.故選.6、D【解析】
根據(jù)方差反映數(shù)據(jù)的波動情況即可解答.【詳解】由于方差反映數(shù)據(jù)的波動情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.故選D.【點睛】本題主要考查了統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\用.7、B【解析】
俯視圖是從上面看幾何體得到的圖形,據(jù)此進(jìn)行判斷即可.【詳解】由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,得拿掉第一排的小正方形,拿掉這個小立方體木塊之后的幾何體的俯視圖是,故選B.【點睛】本題主要考查了簡單幾何體的三視圖,解題時注意:俯視圖就是從幾何體上面看到的圖形.8、A【解析】
由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關(guān)系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應(yīng)該為1,2,3,故選A.【點睛】本題考查了三視圖的簡單性質(zhì),屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關(guān)系是解題關(guān)鍵.9、D【解析】
根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【詳解】移項,得:-2x>-4,
系數(shù)化為1,得:x<2,
故選D.【點睛】考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.10、B【解析】
根據(jù)切線長定理進(jìn)行求解即可.【詳解】∵△ABC的內(nèi)切圓⊙O與AB,BC,CA分別相切于點D,E,F(xiàn),∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周長=2+2+5+5=14,故選B.【點睛】本題考查了三角形的內(nèi)切圓以及切線長定理,熟練掌握切線長定理是解題的關(guān)鍵.11、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵M(jìn)N∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.12、B【解析】
連接DF,在中,利用勾股定理求出CF的長度,則EF的長度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【點睛】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6【解析】試題分析:由題意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,設(shè)AB=AO=OC=x,則有AC=2x,∠ACB=30°,在Rt△ABC中,根據(jù)勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,則AE=6故答案為6.14、k<且k≠1.【解析】根據(jù)一元二次方程kx2-x+1=1有兩個不相等的實數(shù)根,知△=b2-4ac>1,然后據(jù)此列出關(guān)于k的方程,解方程,結(jié)合一元二次方程的定義即可求解:∵有兩個不相等的實數(shù)根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.15、1【解析】試題分析:此題主要考查了多邊形的外角與內(nèi)角,做此類題目,首先求出正多邊形的外角度數(shù),再利用外角和定理求出求邊數(shù).首先根據(jù)求出外角度數(shù),再利用外角和定理求出邊數(shù).∵正多邊形的一個內(nèi)角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案為1.考點:多邊形內(nèi)角與外角.16、5>【解析】
A:根據(jù)平移的性質(zhì)得到OA′=OA,OO′=BB′,根據(jù)點A′在直線求出A′的橫坐標(biāo),進(jìn)而求出OO′的長度,最后得到BB′的長度;B:根據(jù)任意角的正弦值等于它余角的余弦值將sin53°化為cos37°,再進(jìn)行比較.【詳解】A:由平移的性質(zhì)可知,OA′=OA=4,OO′=BB′.因為點A′在直線上,將y=4代入,得到x=5.所以O(shè)O′=5,又因為OO′=BB′,所以點B與其對應(yīng)點B′間的距離為5.故答案為5.B:sin53°=cos(90°-53°)=cos37°,tan37°=,根據(jù)正切函數(shù)與余弦函數(shù)圖像可知,tan37°>tan30°,cos37°>cos45°,即tan37°>,cos37°<,又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.【點睛】本題主要考查圖形的平移、一次函數(shù)的解析式和三角函數(shù)的圖像,熟練掌握這些知識并靈活運用是解答的關(guān)鍵.17、4.8或【解析】
根據(jù)題意可分兩種情況,①當(dāng)CP和CB是對應(yīng)邊時,△CPQ∽△CBA與②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,根據(jù)相似三角形的性質(zhì)分別求出時間t即可.【詳解】①CP和CB是對應(yīng)邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應(yīng)邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當(dāng)t=4.8或時,△CPQ與△CBA相似.【點睛】此題主要考查相似三角形的性質(zhì),解題的關(guān)鍵是分情況討論.18、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎(chǔ)圖形有4+3(n-1)=3n+1個考點:規(guī)律型三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)①32【解析】
(1)過點A作AF⊥BP于F,根據(jù)等腰三角形的性質(zhì)得到BF=BP,易證Rt△ABF∽Rt△BCE,根據(jù)相似三角形的性質(zhì)得到ABBC=BF(2)①延長BP、AD交于點F,過點A作AG⊥BP于G,證明△ABG≌△BCP,根據(jù)全等三角形的性質(zhì)得BG=CP,設(shè)BG=1,則PG=PC=1,BC=AB=5,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出PDPC②延長BF、AD交于點G,過點A作AH⊥BE于H,證明△ABH≌△BCE,根據(jù)全等三角形的性質(zhì)得BG=CP,設(shè)BH=BP=CE=1,又PDPC=PGPB=74,得到PG=7AH=AB2【詳解】解:(1)過點A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴AB∴BP=32(2)①延長BP、AD交于點F,過點A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP設(shè)BG=1,則PG=PC=1∴BC=AB=5在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴PD②延長BF、AD交于點G,過點A作AH⊥BE于H∵AB=BC∴△ABH≌△BCE(AAS)設(shè)BH=BP=CE=1∵PDPC∴PG=72,BG=∵AB2=BH·BG∴AB=222∴AH=∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH為等腰直角三角形∴AF=【點睛】考查等腰三角形的性質(zhì),勾股定理,射影定理,平行線分線段成比例定理等,解題的關(guān)鍵是作出輔助線.難度較大.20、(1)詳見解析;(2)40%;(3)105;(4).【解析】
(1)先求出參加活動的女生人數(shù),進(jìn)而求出參加武術(shù)的女生人數(shù),即可補全條形統(tǒng)計圖,再分別求出參加武術(shù)的人數(shù)和參加器樂的人數(shù),即可求出百分比;(2)用參加剪紙中男生人數(shù)除以剪紙的總?cè)藬?shù)即可得出結(jié)論;(3)根據(jù)樣本估計總體的方法計算即可;(4)利用概率公式即可得出結(jié)論.【詳解】(1)由條形圖知,男生共有:10+20+13+9=52人,∴女生人數(shù)為100-52=48人,∴參加武術(shù)的女生為48-15-8-15=10人,∴參加武術(shù)的人數(shù)為20+10=30人,∴30÷100=30%,參加器樂的人數(shù)為9+15=24人,∴24÷100=24%,補全條形統(tǒng)計圖和扇形統(tǒng)計圖如圖所示:(2)在參加“剪紙”活動項目的學(xué)生中,男生所占的百分比是100%=40%.答:在參加“剪紙”活動項目的學(xué)生中,男生所占的百分比為40%.(3)500×21%=105(人).答:估計其中參加“書法”項目活動的有105人.(4).答:正好抽到參加“器樂”活動項目的女生的概率為.【點睛】此題主要考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、(1);(2)80;(3)100.【解析】
(1)過A作AK⊥BC于K,根據(jù)sin∠BEF=得出,設(shè)FK=3a,AK=5a,可求得BF=a,故;(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,得△EGA∽△EHD,利用相似三角形的性質(zhì)即可求出;(3)延長AB、ED交于K,延長AC、ED交于T,根據(jù)相似三角形的性質(zhì)可求出BE=ED,故可求出矩形的面積.【詳解】解:(1)過A作AK⊥BC于K,∵sin∠BEF=,sin∠FAK=,∴,設(shè)FK=3a,AK=5a,∴AK=4a,∵AB=AC,∠BAC=90°,∴BK=CK=4a,∴BF=a,又∵CF=7a,∴(2)過A作AK⊥BC于K,延長AK交ED于G,則AG⊥ED,∵∠AGE=∠DHE=90°,∴△EGA∽△EHD,∴,∴,其中EG=BK,∵BC=10,tan∠ABC=,cos∠ABC=,∴BA=BC·cos∠ABC=,BK=BA·cos∠ABC=∴EG=8,另一方面:ED=BC=10,∴EH·EA=80(3)延長AB、ED交于K,延長AC、ED交于T,∵BC∥KT,,∴,同理:∵FG2=BF·CG∴,∴ED2=KE·DT∴,又∵△KEB∽△CDT,∴,∴KE·DT=BE2,∴BE2=ED2∴BE=ED∴【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵根據(jù)題意作出輔助線再進(jìn)行求解.22、-1【解析】
先化簡,再選出一個合適的整數(shù)代入即可,要注意a的取值范圍.【詳解】解:,當(dāng)時,原式.【點睛】本題考查的是代數(shù)式的求值,熟練掌握代數(shù)式的化簡是解題的關(guān)鍵.23、x1="-1,"x2=5【解析】根據(jù)十字相乘法因式分解解方程即可.24、15天【解析】試題分析:首先設(shè)規(guī)定的工期是x天,則甲工程隊單獨做需(x-1)天,乙工程隊單獨做需(x+6)天,根據(jù)題意可得等量關(guān)系:乙工程隊干x天的工作量+甲工程隊干4天的工作量=1,根據(jù)等量關(guān)系列出方程,解方程即可.試題解析:設(shè)工程期限為x天.根據(jù)題意得,解得:x=15.經(jīng)檢驗x=15是原分式方程的解.答:工程期限為15天.25、(1)x=;(2)x>3;數(shù)軸見解析;【解析】
(1)先把分式方程轉(zhuǎn)化成整式方程,求出方程的解,再進(jìn)行檢驗即可;(2)先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)方程兩邊都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:檢驗:當(dāng)時,(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年三維編織型材織物項目發(fā)展計劃
- 2025年多層電容器用陶瓷介質(zhì)粉料合作協(xié)議書
- 建筑功能分析報告范文
- 2024年外貿(mào)業(yè)務(wù)員年度個人工作總結(jié)
- 電子證據(jù)安全生產(chǎn)培訓(xùn)
- 安全生產(chǎn)應(yīng)急預(yù)案演練培訓(xùn)
- 二零二五年度多元化場合股份期權(quán)投資合同
- 2025年度私了后不追究責(zé)任協(xié)議:物業(yè)管理服務(wù)糾紛私了協(xié)議
- 二零二五年度離職財務(wù)人員保密協(xié)議及商業(yè)秘密保護(hù)條款書
- 二零二五年度情感咨詢婚姻介紹合同
- 作品集合同范本
- 保安員綜合理論考試題庫備考500題(含各題型)
- 山泉水公司《質(zhì)量管理手冊》
- X證書失智老年人照護(hù)身體綜合照護(hù)講解
- 2025勞動合同法重點法條導(dǎo)讀附案例詳解
- 2025年1月浙江省高考英語試卷真題(含答案)
- QCT457-2023救護(hù)車技術(shù)規(guī)范
- 部編版高二思想政治下冊選擇性必修2《法律與生活》教學(xué)計劃(含教學(xué)進(jìn)度安排)
- 金融基礎(chǔ)知識考試題庫300題(含答案)
- 人教版PEP六年級英語下冊課件unit1
- 2023年北京定額及計算規(guī)則
評論
0/150
提交評論