2024屆廣東省廣州市番禺區(qū)番禺中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第1頁
2024屆廣東省廣州市番禺區(qū)番禺中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第2頁
2024屆廣東省廣州市番禺區(qū)番禺中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第3頁
2024屆廣東省廣州市番禺區(qū)番禺中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第4頁
2024屆廣東省廣州市番禺區(qū)番禺中學(xué)高考數(shù)學(xué)全真模擬密押卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆廣東省廣州市番禺區(qū)番禺中學(xué)高考數(shù)學(xué)全真模擬密押卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列的公差不為零,且,,構(gòu)成新的等差數(shù)列,為的前項(xiàng)和,若存在使得,則()A.10 B.11 C.12 D.132.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.3.已知是雙曲線的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線漸近線的對稱點(diǎn)滿足(為坐標(biāo)原點(diǎn)),則雙曲線的漸近線方程為()A. B. C. D.4.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.5.已知公差不為0的等差數(shù)列的前項(xiàng)的和為,,且成等比數(shù)列,則()A.56 B.72 C.88 D.406.若數(shù)列滿足且,則使的的值為()A. B. C. D.7.已知角的終邊經(jīng)過點(diǎn),則的值是A.1或 B.或 C.1或 D.或8.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.9.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個(gè)單位長度后得到的圖象關(guān)于軸對稱;③若在上恰有7個(gè)零點(diǎn),則的取值范圍為;④若在上單調(diào)遞增,則的取值范圍為.其中,判斷正確的個(gè)數(shù)為()A.1 B.2 C.3 D.410.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.411.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.4 B.8 C.16 D.212.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角所對的邊分別是,若,,則__________.14.某種牛肉干每袋的質(zhì)量服從正態(tài)分布,質(zhì)檢部門的檢測數(shù)據(jù)顯示:該正態(tài)分布為,.某旅游團(tuán)游客共購買這種牛肉干100袋,估計(jì)其中質(zhì)量低于的袋數(shù)大約是_____袋.15.已知函數(shù)則______.16.若函數(shù)為奇函數(shù),則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)x≥0時(shí),f(x)≤h(x)恒成立,求a的取值范圍;(2)當(dāng)x<0時(shí),研究函數(shù)F(x)=h(x)﹣g(x)的零點(diǎn)個(gè)數(shù);(3)求證:(參考數(shù)據(jù):ln1.1≈0.0953).18.(12分)某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從五所高校中任選2所.(1)求甲、乙、丙三名同學(xué)都選高校的概率;(2)若已知甲同學(xué)特別喜歡高校,他必選校,另在四校中再隨機(jī)選1所;而同學(xué)乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機(jī)選2所.(i)求甲同學(xué)選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學(xué)中選高校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.19.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.20.(12分)某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計(jì)寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對稱軸垂直于l3,且交l3于M

),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1

(百米),且F恰在B的正對岸(即BF⊥l3).(1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;(2)游客(視為點(diǎn)P)在棧道AB的何處時(shí),觀測EF的視角(∠EPF)最大?請?jiān)冢?)的坐標(biāo)系中,寫出觀測點(diǎn)P的坐標(biāo).21.(12分)已知函數(shù),設(shè)為的導(dǎo)數(shù),.(1)求,;(2)猜想的表達(dá)式,并證明你的結(jié)論.22.(10分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

利用等差數(shù)列的通項(xiàng)公式可得,再利用等差數(shù)列的前項(xiàng)和公式即可求解.【詳解】由,,構(gòu)成等差數(shù)列可得即又解得:又所以時(shí),.故選:D【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.2、D【解析】

直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.3、B【解析】

先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點(diǎn),且,所以,因?yàn)?,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線對稱點(diǎn)的知識(shí),考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.4、B【解析】

由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個(gè)以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點(diǎn)睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個(gè)面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺(tái)的側(cè)面是曲面,計(jì)算側(cè)面積時(shí)需要將這個(gè)曲面展為平面圖形計(jì)算,而表面積是側(cè)面積與底面圓的面積之和.5、B【解析】

,將代入,求得公差d,再利用等差數(shù)列的前n項(xiàng)和公式計(jì)算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的前n項(xiàng)和公式,考查等差數(shù)列基本量的計(jì)算,是一道容易題.6、C【解析】因?yàn)?,所以是等差?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.7、B【解析】

根據(jù)三角函數(shù)的定義求得后可得結(jié)論.【詳解】由題意得點(diǎn)與原點(diǎn)間的距離.①當(dāng)時(shí),,∴,∴.②當(dāng)時(shí),,∴,∴.綜上可得的值是或.故選B.【點(diǎn)睛】利用三角函數(shù)的定義求一個(gè)角的三角函數(shù)值時(shí)需確定三個(gè)量:角的終邊上任意一個(gè)異于原點(diǎn)的點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,該點(diǎn)到原點(diǎn)的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.8、C【解析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因?yàn)榍胰庵鶠橹比庵?,∴∴面,∴,又,,∴,∴,解?故選C【點(diǎn)睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.9、B【解析】

對函數(shù)化簡可得,進(jìn)而結(jié)合三角函數(shù)的最值、周期性、單調(diào)性、零點(diǎn)、對稱性及平移變換,對四個(gè)命題逐個(gè)分析,可選出答案.【詳解】因?yàn)?,所以周?對于①,因?yàn)?,所以,即,故①錯(cuò)誤;對于②,函數(shù)的圖象向右平移個(gè)單位長度后得到的函數(shù)為,其圖象關(guān)于軸對稱,則,解得,故對任意整數(shù),,所以②錯(cuò)誤;對于③,令,可得,則,因?yàn)?,所以在上?個(gè)零點(diǎn),且,所以第7個(gè)零點(diǎn),若存在第8個(gè)零點(diǎn),則,所以,即,解得,故③正確;對于④,因?yàn)?,且,所以,解得,又,所以,故④正確.故選:B.【點(diǎn)睛】本題考查三角函數(shù)的恒等變換,考查三角函數(shù)的平移變換、最值、周期性、單調(diào)性、零點(diǎn)、對稱性,考查學(xué)生的計(jì)算求解能力與推理能力,屬于中檔題.10、D【解析】

圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.11、A【解析】

利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計(jì)算,難度容易.12、A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以上任意一點(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點(diǎn)睛】本小題主要考查正弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查三角形的內(nèi)角和定理,屬于中檔題.14、1【解析】

根據(jù)正態(tài)分布對稱性,求得質(zhì)量低于的袋數(shù)的估計(jì)值.【詳解】由于,所以,所以袋牛肉干中,質(zhì)量低于的袋數(shù)大約是袋.故答案為:【點(diǎn)睛】本小題主要考查正態(tài)分布對稱性的應(yīng)用,屬于基礎(chǔ)題.15、【解析】

先由解析式求得(2),再求(2).【詳解】(2),,所以(2),故答案為:【點(diǎn)睛】本題考查對數(shù)、指數(shù)的運(yùn)算性質(zhì),分段函數(shù)求值關(guān)鍵是“對號(hào)入座”,屬于容易題.16、-2【解析】

由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域?yàn)?,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點(diǎn)睛】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析;(3)見解析【解析】

(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得導(dǎo)數(shù),討論a>1和a≤1,判斷導(dǎo)數(shù)的符號(hào),由恒成立思想可得a的范圍;(2)求得F(x)=h(x)﹣g(x)的導(dǎo)數(shù)和二階導(dǎo)數(shù),判斷F'(x)的單調(diào)性,討論a≤﹣1,a>﹣1,F(xiàn)(x)的單調(diào)性和零點(diǎn)個(gè)數(shù);(3)由(1)知,當(dāng)a=1時(shí),ex>1+ln(x+1)對x>0恒成立,令;由(2)知,當(dāng)a=﹣1時(shí),對x<0恒成立,令,結(jié)合條件,即可得證.【詳解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),則,①若a≤1,則,H'(x)≥0,H(x)在[0,+∞)遞增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,滿足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)遞增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,且x→+∞時(shí),H'(x)→+∞,則?x0∈(0,+∞),使H'(x0)=0進(jìn)而H(x)在[0,x0)遞減,在(x0,+∞)遞增,所以當(dāng)x∈(0,x0)時(shí)H(x)<H(0)=0,即當(dāng)x∈(0,x0)時(shí),f(x)>h(x),不滿足題意,舍去;綜合①,②知a的取值范圍為(﹣∞,1].(Ⅱ)解:依題意得,則F'(x)=ex﹣x2+a,則F''(x)=ex﹣2x>0在(﹣∞,0)上恒成立,故F'(x)=ex﹣x2+a在(﹣∞,0)遞增,所以F'(x)<F'(0)=1+a,且x→﹣∞時(shí),F(xiàn)'(x)→﹣∞;①若1+a≤0,即a≤﹣1,則F'(x)<F'(0)=1+a≤0,故F(x)在(﹣∞,0)遞減,所以F(x)>F(0)=0,F(xiàn)(x)在(﹣∞,0)無零點(diǎn);②若1+a>0,即a>﹣1,則使,進(jìn)而F(x)在遞減,在遞增,,且x→﹣∞時(shí),,F(xiàn)(x)在上有一個(gè)零點(diǎn),在無零點(diǎn),故F(x)在(﹣∞,0)有一個(gè)零點(diǎn).綜合①②,當(dāng)a≤﹣1時(shí)無零點(diǎn);當(dāng)a>﹣1時(shí)有一個(gè)零點(diǎn).(Ⅲ)證明:由(Ⅰ)知,當(dāng)a=1時(shí),ex>1+ln(x+1)對x>0恒成立,令,則即;由(Ⅱ)知,當(dāng)a=﹣1時(shí),對x<0恒成立,令,則,所以;故有.【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間,考查函數(shù)零點(diǎn)存在定理的運(yùn)用,考查分類討論思想方法,以及運(yùn)算能力和推理能力,屬于難題.對于函數(shù)的零點(diǎn)問題,它和方程的根的問題,和兩個(gè)函數(shù)的交點(diǎn)問題是同一個(gè)問題,可以互相轉(zhuǎn)化;在轉(zhuǎn)化為兩個(gè)函數(shù)交點(diǎn)時(shí),如果是一個(gè)常函數(shù)一個(gè)含自變量的函數(shù),注意讓含有自變量的函數(shù)式子盡量簡單一些.18、(1)(2)(i)(ii)分布列見解析,【解析】

(1)先計(jì)算甲、乙、丙同學(xué)分別選擇D高校的概率,利用事件的獨(dú)立性即得解;(2)(i)分別計(jì)算每個(gè)事件的概率,再利用事件的獨(dú)立性即得解;(ii),利用事件的獨(dú)立性,分別計(jì)算對應(yīng)的概率,列出分布列,計(jì)算數(shù)學(xué)期望即得解.【詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學(xué)都選高校,共有四種情況,甲同學(xué)選高校的概率為,因此乙、丙兩同學(xué)選高校的概率為,因?yàn)槊课煌瑢W(xué)彼此獨(dú)立,所以甲、乙、丙三名同學(xué)都選高校的概率為.(2)(i)甲同學(xué)必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因?yàn)槊课煌瑢W(xué)彼此獨(dú)立,所以甲同學(xué)選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學(xué)期望為.【點(diǎn)睛】本題考查了事件獨(dú)立性的應(yīng)用和隨機(jī)變量的分布列和期望,考查了學(xué)生綜合分析,概念理解,實(shí)際應(yīng)用,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19、(1)見解析;(2)【解析】

(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點(diǎn),∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點(diǎn),,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因?yàn)樗倪呅问蔷匦?,,,,設(shè)幾何體的體積為,則,∴,即:.【點(diǎn)睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計(jì)算能力.20、(1)見解析,,x[0,1];(2)P(,)時(shí),視角∠EPF最大.【解析】

(1)以A為原點(diǎn),l1為x軸,拋物線的對稱軸為y軸建系,設(shè)出方程,通過點(diǎn)的坐標(biāo)可求方程;(2)設(shè)出的坐標(biāo),表示出,利用基本不等式求解的最大值,從而可得觀測點(diǎn)P的坐標(biāo).【詳解】(1)以A為原點(diǎn),l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設(shè)拋物線方程為代入點(diǎn)B得:p=1,故方程為,x[0,1];(2)設(shè)P(,),t[0,],作PQ⊥l3于Q,記∠EPQ=,∠FPQ=,,令,,則:,當(dāng)且僅當(dāng)即,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論