余弦定理 高一數(shù)學(xué)人教A版(2019)必修2_第1頁(yè)
余弦定理 高一數(shù)學(xué)人教A版(2019)必修2_第2頁(yè)
余弦定理 高一數(shù)學(xué)人教A版(2019)必修2_第3頁(yè)
余弦定理 高一數(shù)學(xué)人教A版(2019)必修2_第4頁(yè)
余弦定理 高一數(shù)學(xué)人教A版(2019)必修2_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

余弦定理引入

我們知道,一個(gè)三角形含有各種各樣的幾何量,比如:

三邊的邊長(zhǎng),三個(gè)內(nèi)角的度數(shù),三角形的面積等.

它們之間應(yīng)該是存在確定關(guān)系的,如

在直角三角形中,邊、角之間的定量關(guān)系就有勾股定理,銳角三角函數(shù)等.

在一般三角形中,我們?cè)ㄐ缘匮芯窟^(guò)三角形的邊角關(guān)系,并得到了判定三角形全等的一些方法,如SSS,SAS,ASA,AAS

這些判定方法表明:給定一個(gè)三角形三條邊、三個(gè)角這6個(gè)元素中的某些元素,這個(gè)三角形就能唯一確定.

那么三角形的其它元素與這些給定元素之間在數(shù)量上到底有著怎樣的關(guān)系呢,這就是這一部分內(nèi)容要研究的問(wèn)題。

在全等三角形的判定中,有一種方法叫SAS(邊角邊),即一個(gè)三角形,只要給出了兩邊及其夾角,這個(gè)三角形就唯一確定了,也就是說(shuō),這個(gè)三角形的其它邊和角都可用給出的兩邊及其夾角計(jì)算出來(lái).知識(shí)探究

幾何圖形到向量恰當(dāng)?shù)南蛄窟\(yùn)算向量到幾何關(guān)系返回余弦定理的內(nèi)容

三角形中,任何一邊的平方,等于其它兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍,即思考(3):

這些結(jié)論有何特點(diǎn),用自然語(yǔ)言該怎樣敘述?

問(wèn)題2:

這你還有證明這個(gè)定理的其它思路嗎,能把它們現(xiàn)剛才的向量法比較一下嗎?返回

以CB

所在的直線為x

軸,過(guò)C點(diǎn)垂直于CB

的直線為y

軸,建立如圖所示的坐標(biāo)系,則有返回返回

這三種方法中,用向量法最為簡(jiǎn)潔,將取兩邊對(duì)應(yīng)向量為基底,將另一邊表示出來(lái),用數(shù)量積運(yùn)算即得結(jié)果;

用幾何法較為繁瑣,要涉及作垂線,需將分銳角、鈍角、直三種情況進(jìn)行討論,最后進(jìn)行整合.返回

思考(3):

由幾何法的證明過(guò)程,你能得出勾股定理和余弦定理的關(guān)系嗎?

勾股定理是余弦定理的特例(當(dāng)兩邊的夾角為直角時(shí)),

余弦定理是勾股定理的推廣(把兩邊的夾角由直角推廣到(0°,180°)內(nèi)的任意角)

問(wèn)題3:

余弦定理解決了“已知三角兩邊和夾角,求第三邊的問(wèn)題”.但我們已知了三角形的三邊,你能用余弦定理確定三個(gè)角的大小嗎?

思考(1):

你能用全等三角形的判定方法來(lái)解釋嗎?余弦定理的推論

SSS.

即三角形的三邊確定后,三個(gè)角的大小也是確定的.

思考(3):

請(qǐng)?jiān)倩仡櫼幌掠嘞叶ɡ淼南嚓P(guān)內(nèi)容?

思考(2):

請(qǐng)你能用自然語(yǔ)言來(lái)表述這個(gè)結(jié)論嗎?返回余弦定理

三角形中,任何一邊的平方,等于其它兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍,即推論:特例:勾股定理

思考(4):

三角形的三條邊,三個(gè)角叫三角形的元素.

已知三角形的一些元素,求其余元素的過(guò)程叫解三角形.你認(rèn)為余弦定理在解三角形時(shí)可以解決哪些類型的問(wèn)題?①已知兩邊和夾角,求其它的邊和角;②已知三邊,求三個(gè)角.

三角形中,任何一

角的余弦,等于該角兩邊的平方和減去對(duì)邊的平方,與這兩邊乘積的兩倍的比值,即返回例析

思考(3):解三角形,一般是怎樣一個(gè)思路?

先作一個(gè)草圖,并標(biāo)出已知元素,

再結(jié)合定理,確定恰當(dāng)求解順序,

然后依次求余下的元素.返回

思考:若去掉題目中“銳角”二字,結(jié)果會(huì)怎樣?分兩種情況進(jìn)行討論:練習(xí)1.我們是怎樣由向量知識(shí)得到余弦定理?課堂小結(jié)

余弦定理還有哪些哪些推導(dǎo)方法?你更喜歡哪一種?坐標(biāo)法;幾何法.2.說(shuō)說(shuō)余弦定理是怎樣的?其推論是又是怎樣的?3.余弦定理可以直接解決解三角形

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論