




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省珠海市香洲區(qū)2024年數(shù)學(xué)八年級下冊期末學(xué)業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,空地上(空地足夠大)有一段長為的舊墻,小敏利用舊墻和木欄圍成一個矩形菜園,已知木欄總長,矩形菜園的面積為.若設(shè),則可列方程()A. B.C. D.2.有位同學(xué)參加歌詠比賽,所得的分?jǐn)?shù)互不相同,取得分前位同學(xué)進入決賽,小明知道自己的分?jǐn)?shù)后,要判斷自己能否進入決賽,他只需知道這位同學(xué)得分的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差3.將點A(-2,-3)向左平移3個單位,再向上平移2個單位得到點B,則B的坐標(biāo)是()A.(1,-3) B.(-2,1) C.(-5,-1) D.(-5,-5)4.在平面直角坐標(biāo)系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標(biāo)是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)5.如圖,點M是直線y=2x+3上的動點,過點M作MN垂直于x軸于點N,y軸上是否存在點P,使得△MNP為等腰直角三角形,則符合條件的點P有(提示:直角三角形斜邊上的中線等于斜邊的一半)()A.2個 B.3個 C.4個 D.5個6.下列函數(shù)中,y隨x的增大而減小的有()①y=﹣2x+1;②y=6﹣x;③y=-;④y=(1﹣)x.A.1個 B.2個 C.3個 D.4個7.某同學(xué)在研究傳統(tǒng)文化“抖空竹”時有一個發(fā)現(xiàn):他把它抽象成數(shù)學(xué)問題,如圖所示:已知,,,則的度數(shù)是()A. B. C. D.8.如圖,在Rt△ABC中,CD是斜邊AB上的中線.若∠A=20°,則∠BDC=()A.30° B.40° C.45° D.60°9.順次連接四邊形各邊中點所得到的四邊形是菱形,則四邊形必須滿足的條件是()A.對角線互相垂直 B.對角線相等C.一組鄰邊相等 D.一個內(nèi)角是直角10.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0),則光線從A點到B點經(jīng)過的路線長是()A.4 B.5 C.6 D.7二、填空題(每小題3分,共24分)11.如圖,在ABCD中,線段BE、CE分別平分∠ABC和∠BCD,若AB=5,BE=8,則CE的長度為________.12.在矩形中,與相交于點,,那么的度數(shù)為,__________.13.如圖所示的圓形工件,大圓的半徑為,四個小圓的半徑為,則圖中陰影部分的面積是_____(結(jié)果保留).14.已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,那么這組數(shù)據(jù)的方差是__.15.一組數(shù)據(jù)1,2,3,x,5的平均數(shù)是3,則該組數(shù)據(jù)的方差是_____.16.如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,則PB+PE的最小值是.17.如圖,已知∠EAD=30°,△ADE繞點A旋轉(zhuǎn)50°后能與△ABC重合,則∠BAE=_________°.18.分解因式:m2nmn=_____。三、解答題(共66分)19.(10分)如圖①,正方形ABCD中,點E、F都在AD邊上,且AE=FD,分別連接BE、FC,對角線BD交FC于點P,連接AP,交BE于點G;(1)試判斷AP與BE的位置關(guān)系;(2)如圖②,再過點P作PH⊥AP,交BC于點H,連接AH,分別交BE、BD于點N,M,請直接寫出圖②中有哪些等腰三角形.20.(6分)(1)(發(fā)現(xiàn))如圖1,在中,分別交于,交于.已知,,,求的值.思考發(fā)現(xiàn),過點作,交延長線于點,構(gòu)造,經(jīng)過推理和計算能夠使問題得到解決(如圖2).請回答:的值為______.(2)(應(yīng)用)如圖3,在四邊形中,,與不平行且,對角線,垂足為.若,,,求的長.(3)(拓展)如圖4,已知平行四邊形和矩形,與交于點,,且,,判斷與的數(shù)量關(guān)系并證明.21.(6分)已知一次函數(shù).(1)若這個函數(shù)的圖象經(jīng)過原點,求a的值.(2)若這個函數(shù)的圖象經(jīng)過一、三、四象限,求a的取值范圍.22.(8分)某班級準(zhǔn)備購買一些獎品獎勵春季運動會表現(xiàn)突出的同學(xué),獎品分為甲、乙兩種,已知,購買一個甲獎品比一個乙獎品多用20元,若用400元購買甲獎品的個數(shù)是用160元購買乙獎品個數(shù)的一半.(1)求購買一個甲獎品和一個乙獎品各需多少元?(2)經(jīng)商談,商店決定給予該班級每購買甲獎品3個就贈送一個乙獎品的優(yōu)惠,如果該班級需要乙獎品的個數(shù)是甲獎品的2倍還多8個,且該班級購買兩種獎項的總費用不超過640元,那么該班級最多可購買多少個甲獎品?23.(8分)某校組織275名師生郊游,計劃租用甲、乙兩種客車共7輛,已知甲客車載客量是30人,乙客車載客量是45人,其中,每輛乙種客車租金比甲種客車多100元,5輛甲種客車和2輛乙種客車租金共需3000元.(1)租用一輛甲種客車、一輛乙種客車的租金各多少元?(2)設(shè)租用甲種客車輛,總租車費為元,求與的函數(shù)關(guān)系式;在保證275名師生都有座位的前提下,求當(dāng)租用甲種客車多少輛時,總租車費最少,并求出這個最少費用.24.(8分)如圖,在中,點是的中點,點是線段的延長線上的一動點,連接,過點作的平行線,與線段的延長線交于點,連接、.(1)求證:四邊形是平行四邊形.(2)若,,則在點的運動過程中:①當(dāng)______時,四邊形是矩形;②當(dāng)______時,四邊形是菱形.25.(10分)如圖,一架梯子AB斜靠在一豎直的墻OA上,這時AO=2m,∠OAB=30°,梯子頂端A沿墻下滑至點C,使∠OCD=60°,同時,梯子底端B也外移至點D.求BD的長度.(結(jié)果保留根號)26.(10分)為鼓勵學(xué)生參加體育鍛煉,學(xué)校計劃拿出不超過3200元的資金購買一批籃球和排球,已知籃球和排球的單價比為3:2,單價和為160元.(1)籃球和排球的單價分別是多少元?(2)若要求購買的籃球和排球的總數(shù)量是36個,且購買的排球數(shù)少于11個,有哪幾種購買方案?
參考答案一、選擇題(每小題3分,共30分)1、B【解析】
設(shè),則,根據(jù)矩形面積公式列出方程.【詳解】解:設(shè),則,由題意,得.故選:.【點睛】考查了由實際問題抽象出一元二次方程,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.2、B【解析】
由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知9人成績的中位數(shù)是第5名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于9個人中,第5名的成績是中位數(shù),故小明同學(xué)知道了自己的分?jǐn)?shù)后,想知道自己能否進入決賽,需知道這9位同學(xué)的分?jǐn)?shù)的中位數(shù).
故選:B.【點睛】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當(dāng)?shù)倪\用.3、C【解析】由題中平移規(guī)律可知:點B的橫坐標(biāo)為-2-3=-5;縱坐標(biāo)為-3+2=-1,可知點B的坐標(biāo)是(-5,-1).故選C.4、B【解析】試題分析:由平移規(guī)律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標(biāo)是(1,5),故選B.考點:點的平移.5、C【解析】
根據(jù)等腰直角三角形的定義,由題意,應(yīng)分兩類情況討論:當(dāng)MN為直角邊時和當(dāng)MN為斜邊時點P的位置的求法.【詳解】當(dāng)M運動到(-1,1)時,ON=1,MN=1,∵MN⊥x軸,所以由ON=MN可知,(0,0)和(0,1)就是符合條件的P點;又當(dāng)M運動到第三象限時,要MN=MP,且PM⊥MN,設(shè)點M(x,2x+3),則有-x=-(2x+3),解得x=-3,所以點P坐標(biāo)為(0,-3).如若MN為斜邊時,則∠ONP=45°,所以O(shè)N=OP,設(shè)點M(x,2x+3),則有-x=-(2x+3),化簡得-2x=-2x-3,這方程無解,所以這時不存在符合條件的P點;又當(dāng)點M′在第二象限,M′N′為斜邊時,這時N′P=M′P,∠M′N′P=45°,設(shè)點M′(x,2x+3),則OP=ON′,而OP=M′N′,∴有-x=(2x+3),解得x=-,這時點P的坐標(biāo)為(0,-).因此,符合條件的點P坐標(biāo)是(0,0),(0,-),(0,-3),(0,1).故答案選C,【點睛】本題主要采用分類討論法,來求得符合條件的點P坐標(biāo).題中沒有明確說明哪個邊是直角邊,哪條邊是斜邊,所以分情況說明,在證明時,注意點M的坐標(biāo)表示方法以及坐標(biāo)與線段長之間的轉(zhuǎn)換.6、D【解析】①中,k=-2<0;②中,k=-1<0;③中,k=-<0;④中,k=-<0.根據(jù)一次函數(shù)y=kx+b(k≠0)的性質(zhì),k<0時,y隨x的增大而減小.故①②③④都符合.故選D.點睛:本題考查一次函數(shù)y=kx+b(k≠0)的性質(zhì):當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減?。?、B【解析】
延長交于,依據(jù),,可得,再根據(jù)三角形外角性質(zhì),即可得到.【詳解】解:如圖,延長交于,,,,又,,故選:.【點睛】本題主要考查了平行線的性質(zhì),解決問題的關(guān)鍵是掌握:兩直線平行,同位角相等.8、B【解析】
根據(jù)直角三角形斜邊上的中線,可得CD=AD,所以∠A=∠DCA=20°,再三角形外角性質(zhì)即可得到∠BDC.【詳解】∵∠ACB=90°,CD是斜邊AB上的中線,∴BD=CD=AD.∴∠A=∠DCA=20°,∴∠BDC=∠A+∠DCA=20°+20°=40°.故選B.【點睛】本題考查直角三角形斜邊上的中線的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.9、A【解析】
首先根據(jù)題意畫出圖形,由四邊形EFGH是菱形,點E,F(xiàn),G,H分別是邊AD,AB,BC,CD的中點,利用三角形中位線的性質(zhì)與菱形的性質(zhì),即可判定原四邊形一定是對角線相等的四邊形.【詳解】如圖,根據(jù)題意得:四邊形EFGH是菱形,點E,F(xiàn),G,H分別是邊AD,AB,BC,CD的中點,∴EF=FG=GH=EH,BD=2EF,AC=2FG,∴BD=AC.∴原四邊形一定是對角線相等的四邊形.故選B.【點睛】本題考查中點四邊形,熟練掌握中位線的性質(zhì)是解題的關(guān)鍵.10、B【解析】
如果設(shè)A點關(guān)于y軸的對稱點為A′,那么C點就是A′B與y軸的交點.易知A′(-3,3),又B(1,0),可用待定系數(shù)法求出直線A′B的方程.再求出C點坐標(biāo),根據(jù)勾股定理分別求出AC、BC的長度.那么光線從A點到B點經(jīng)過的路線長是AC+BC,從而得出結(jié)果.【詳解】解:如果將y軸當(dāng)成平面鏡,設(shè)A點關(guān)于y軸的對稱點為A′,則由光路知識可知,A′相當(dāng)于A的像點,光線從A到C到B,相當(dāng)于光線從A′直接到B,所以C點就是A′B與y軸的交點.∵A點關(guān)于y軸的對稱點為A′,A(3,3),∴A′(-3,3),進而由兩點式寫出A′B的直線方程為:y=?(x-1).令x=0,求得y=.所以C點坐標(biāo)為(0,).那么根據(jù)勾股定理,可得:AC==,BC==.因此,AC+BC=1.故選:B.【點睛】此題考查軸對稱的基本性質(zhì),勾股定理的應(yīng)用等知識點.此題考查的思維技巧性較強.二、填空題(每小題3分,共24分)11、6【解析】
根據(jù)角平分線的定義和平行線的性質(zhì)得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根據(jù)直角三角形的勾股定理得到CE即可.【詳解】解:∵BE和CE分別平分∠ABC和∠BCD,∴∠ABE=∠EBC,∠DCE=∠ECB,∵?ABCD,∴AB∥CD,AB=CD=5,∴∠ABC+∠DCB=180°,∠AEB=∠EBC,∠DEC=∠ECB,∴(∠ABC+∠DCB)=90°,∠ABE=∠AEB,∠DEC=∠DCE,∴∠EBC+∠ECB=90°,AB=AE=5,CD=DE=AB=5,∴△EBC是直角三角形,AD=BC=AE+ED=10根據(jù)勾股定理:CE=.故答案為6【點睛】本題主要考查了平行四邊形的性質(zhì),在平行四邊形中,當(dāng)出現(xiàn)角平分線時,一般可構(gòu)造等腰三角形,進而利用等腰三角形的性質(zhì)解題.12、【解析】
根據(jù)矩形的性質(zhì)可得∠OAD=∠ODA,再根據(jù)三角形的外角性質(zhì)可得∠AOB=∠DAO+∠ADO=46°,從而可求∠OAD度數(shù).【詳解】∵四邊形是矩形∴OA=OC=OB=OD,∴∠DAO=∠ADO,∵∠AOB=∠DAO+∠ADO=46°,∴=∠AOB=×46°=23°即=23°.故答案為:23°.【點睛】此題考查矩形的性質(zhì),解決矩形中角度問題一般會運用矩形對角線分成的四個小三角形的等腰三角形的性質(zhì).13、3080π.【解析】
用大圓的面積減去4個小圓的面積即可得到剩余部分的面積,然后把R和r的值代入計算出對應(yīng)的代數(shù)式的值.【詳解】依題意得:65.41π-17.31π×4=4177.16π-1197.16π=3080π(mm1).答:剩余部分面積為3080πmm1.故答案為:3080π.【點睛】本題考查了列代數(shù)式:把問題中與數(shù)量有關(guān)的詞語,用含有數(shù)字、字母和運算符號的式子表示出來,就是列代數(shù)式.也考查了求代數(shù)式的值.14、【解析】
先由平均數(shù)的公式計算出x的值,再根據(jù)方差的公式計算.一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為Z,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].【詳解】x=1×6﹣1﹣2﹣0﹣(﹣1)﹣1=3s2=[(1﹣1)2+(2﹣1)2+(0﹣1)2+(﹣1﹣1)2+(3﹣1)2+(1﹣1)2]=.故答案為.【點睛】本題考查了方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.15、1【解析】
先用平均數(shù)是3可得x的值,再結(jié)合方差公式計算即可.【詳解】平均數(shù)是3(1+1+3+x+5),解得:x=4,∴方差是S1[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]10=1.故答案為1.【點睛】本題考查了平均數(shù)和方差的概念,解題的關(guān)鍵是牢記方差的計算公式,難度不大.16、10【解析】
由正方形性質(zhì)的得出B、D關(guān)于AC對稱,根據(jù)兩點之間線段最短可知,連接DE,交AC于P,連接BP,則此時PB+PE的值最小,進而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關(guān)于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.17、20【解析】
利用旋轉(zhuǎn)的性質(zhì)得出∠DAB=50°,進而得出∠BAE的度數(shù).【詳解】解:∵∠EAD=30°,△ADE繞著點A旋轉(zhuǎn)50°后能與△ABC重合,∴∠DAB=50°,則∠BAE=∠DAB-∠DAE=50°-30°=20°.故答案為:20.【點睛】此題主要考查了旋轉(zhuǎn)的性質(zhì),得出旋轉(zhuǎn)角∠DAB的度數(shù)是解題關(guān)鍵.18、n(m-)2【解析】
原式提取n,再利用完全平方公式分解即可.【詳解】解:原式=n(m2-m+)=n(m-)2,
故答案為:n(m-)2【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.三、解答題(共66分)19、(1)垂直,理由見解析;(2)△ABD,△BCD是等腰△,△APH是等腰△,△PHC是等腰△.【解析】
(1)由題意可證△ADP≌△DPC,△AEB≌△DFC可得∠DAP=∠DCF=∠ABE,通過角的換算可證AP⊥BE.(2)根據(jù)正方形的性質(zhì)可得△ABD,△BCD是等腰△,由AP⊥PH,∠ABC=90°可得A,B,H,P四點共圓,可證△APH,△PHC是等腰△【詳解】(1)垂直,理由是∵四邊形ABCD是正方形,∴AD=CD=AB,∠BAD=∠CDA=90°,∠ADB=∠CDB=45°,且DP=DP,∴△ADP≌△CDP,∴∠DCF=∠DAP,AP=PC又AE=DF,∠BAD=∠CDA=90°,AB=CD,∴△ABE≌△DCF,∴∠ABE=∠DCF,∴∠ABE=∠DAP∵∠ABE+∠AEB=90°,∴∠DAP+∠AEB=90°,即∠AGE=90°,∴AP⊥BE(2)∵AB=BC=CD=DA∴△ABD,△BCD是等腰△∵AP⊥PH,∠ABC=90°∴A,B,H,P四點共圓∴∠PAH=∠DBC=45°∴∠PAH=∠PHA=45°∴PA=PH∴△APH是等腰△∵AP=PH,AP=PC,∴PC=PH∴△PHC是等腰△.【點睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)和判定,關(guān)鍵是利用這些性質(zhì)解決問題.20、(1);(2);(3).【解析】
(1)由DE//BC,EF//DC,可證得四邊形DCFE是平行四邊形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的長即為BC+DE的值;(2)同(1)做CE//DB,交AB延長線于點E,易證四邊形DBEC是平行四邊形,根據(jù)已知可證△DAB△CBA(SAS),得AC=DB,等量代換,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;(3)連接AE、CE,由四邊形ABCD是平行四邊形,四邊形ABEF是矩形,易證得四邊形DCEF是平行四邊形,繼而證得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.【詳解】解:(1)∵DE//BC,EF//DC,∴四邊形DCFE是平行四邊形,∴DE=CF,DC=EF,∴BC+ED=BC+CF=BF,∵DC⊥BE,DC//EF,∴∠BEF=90°,在Rt△BEF中,∵BE=5,EF=DC=3,∴BF==.故BC+DE=.(2)做CE//DB,交AB延長線于點E,由(1)同理,可證得四邊形DBEC是平行四邊形,BE=DC=3,在△DAB和△CBA中,∴△DAB△CBA(SAS),∴DB=AC,∵四邊形DBEC是平行四邊形,DB=CE,∴AC=CE,∵AC⊥DB,∴AC⊥CE,∴△ACE是等腰直角三角形,∵AE=AB+BE=AB+DC=5+3=8,∴AC=,求得AC=.故AC的長為.(3)AC=DF;證明:連接AE、CE,如圖,∵四邊形ABCD是平行四邊形,∴AB//DC,∵四邊形ABEF是矩形,∴AB//FE,BF=AE,∴DC//FE,∴四邊形DCEF為平行四邊形,∴CE=DF,∵四邊形ABEF是矩形,∴BF=AE,∵BF=DF,∴DF=CE,∴AF=BE,∵四邊形ABCD是平行四邊形,∴AD=BC,在△FAD和△EBC中,∴△FAD△EBC(SSS),∴∠AFD=∠BEC,∴∠FEB=∠EFA=90°,∵∠EBF=60°,∠BFD=30°,∴∠DFA=90°-30°-(90°-60°)=30°,∴∠CEB=30°,∴OE=OB,∵∠EBF=60°,∴∠BEA=∠EBF=60°,∴∠AEC=60°+30°=90°,即△AEC是等腰直角三角形,∴AC=CE,∵DF=CE,∴AC=DF.故AC與DF之間的數(shù)量關(guān)系是AC=DF.【點睛】本題考查幾何的綜合,難度偏高,涉及的知識點有三角形、四邊形、平行線等,熟練掌握以上知識點的綜合運用是順利解題的關(guān)鍵.21、(1);(2)【解析】
(1)y=kx+b經(jīng)過原點則b=0,據(jù)此求解;
(2)y=kx+b的圖象經(jīng)過一、三、四象限,k>0,b<0,據(jù)此列出不等式組求解即可.【詳解】(1)由題意得,,∴.(2)由題意得解得,∴a的取值范圍是.【點睛】考查了一次函數(shù)的性質(zhì),了解一次函數(shù)的性質(zhì)是解答本題的關(guān)鍵。22、(1)購買一個甲獎品需元,買一個乙獎品需要元;(2)該班級最多可購買個甲獎品.【解析】
(1)設(shè)買一個乙獎品需要x元,購買一個甲獎品需元,根據(jù)題意用400元購買甲獎品的個數(shù)是用160元購買乙獎品個數(shù)的一半,列出分式方程,然后求解即可;(2)設(shè)該班級可購買a個甲獎品,根據(jù)題意列出一元一次不等式,然后求解即可.【詳解】解:設(shè)買一個乙獎品需要元,購買一個甲獎品需元,由題意得:,經(jīng)檢驗是原方程的解,則答:購買一個甲獎品需元,買一個乙獎品需要元;設(shè)該班級可購買個甲獎品,根據(jù)題意得,解得,答:該班級最多可購買個甲獎品.【點睛】分式方程和一元一次不等式在實際生活中的應(yīng)用是本題的考點,根據(jù)題意列出方程是解題的關(guān)鍵.23、(1)租用一輛甲種客車的費用為300元,則一輛乙種客車的費用為400元;(2)w=-100x+2800;當(dāng)租用甲種客車2輛時,總租車費最少,最少費用為1元.【解析】
(1)設(shè)租用一輛甲種客車的費用為x元,則一輛乙種客車的費用為(x+100)元,列出方程即可解決問題;(2)由題意w=300x+400(7-x)=-100x+2800,列出不等式求出x的取值范圍,利用一次函數(shù)的性質(zhì)即可解決問題.【詳解】(1)設(shè)租用一輛甲種客車的費用為x元,則一輛乙種客車的費用為(x+100)元,由題意5x+2(x+100)=2300,解得x=300,答:租用一輛甲種客車的費用為300元,則一輛乙種客車的費用為400元.(2)由題意w=300x+400(7-x)=-100x+2800,又30x+45(7-x)≥275,解得x≤,∴x的最大值為2,∵-100<0,∴x=2時,w的值最小,最小值為1.答:當(dāng)租用甲種客車2輛時,總租車費最少,最少費用為1元.【點睛】本題考查一元一次方程的應(yīng)用、一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用等知識,解題的關(guān)鍵是理解題意,學(xué)會構(gòu)建一次函數(shù)解決最值問題.24、(1)、證明過程見解析;(2)、①、2;②、1.【解析】
(1)、首先證明△BEF和△DCF全等,從而得出DC=BE,結(jié)合DC和AB平行得出平行四邊形;(2)、①、根據(jù)矩形得出∠CEB=90°,結(jié)合∠ABC=120°得出∠CBE=60°,根據(jù)直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45441-2025溫室氣體產(chǎn)品碳足跡量化方法與要求塑料制品
- 湘豫名校聯(lián)考2024-2025學(xué)年高三下學(xué)期第二次模擬考試語文試卷(圖片版無答案)
- 【道路運輸企業(yè)主要負責(zé)人】理論考題及答案
- 2025個人向個人借款的合同
- 2025農(nóng)田租賃合同書下載
- 2025租房合同模板下載3
- 高校畢業(yè)生創(chuàng)業(yè)扶持政策全新實施方案
- 長春建筑學(xué)院《鐵路行車織》2023-2024學(xué)年第二學(xué)期期末試卷
- 證券從業(yè)資格考試題庫與答案(A卷)
- 九州職業(yè)技術(shù)學(xué)院《工程項目成本規(guī)劃與控制》2023-2024學(xué)年第二學(xué)期期末試卷
- 瑞幸加盟合同范本
- CJJ 122-2017 游泳池給水排水工程技術(shù)規(guī)程
- 【人教部編版】五年級語文下冊第13課《人物描寫一組 摔跤》教學(xué)課件
- 讀書分享讀書交流會《四世同堂》
- 2024年人教精通版四年級下冊英語期末專項復(fù)習(xí)-閱讀理解
- 中醫(yī)推拿基礎(chǔ)培訓(xùn)課件
- 防電信詐騙安全教案
- 產(chǎn)品履歷表完
- 保健食品備案產(chǎn)品可用輔料及其使用規(guī)定
- 肺癌伴胸腔積液護理查房
- 健康管理中的健康教育與健康促進研究
評論
0/150
提交評論