2024屆江蘇省無錫江陰市華士片中考五模數(shù)學試題含解析_第1頁
2024屆江蘇省無錫江陰市華士片中考五模數(shù)學試題含解析_第2頁
2024屆江蘇省無錫江陰市華士片中考五模數(shù)學試題含解析_第3頁
2024屆江蘇省無錫江陰市華士片中考五模數(shù)學試題含解析_第4頁
2024屆江蘇省無錫江陰市華士片中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省無錫江陰市華士片中考五模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.給出下列各數(shù)式,①②③④計算結(jié)果為負數(shù)的有()A.1個 B.2個 C.3個 D.4個2.實數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a(chǎn)+b=0 B.b<a C.a(chǎn)b>0 D.|b|<|a|3.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.324.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數(shù)圖象是()A. B. C. D.5.計算的值()A.1 B. C.3 D.6.對于不為零的兩個實數(shù)a,b,如果規(guī)定:a★b=,那么函數(shù)y=2★x的圖象大致是()A. B. C. D.7.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根8.“鳳鳴”文學社在學校舉行的圖書共享儀式上互贈圖書,每個同學都把自己的圖書向本組其他成員贈送一本,某組共互贈了210本圖書,如果設該組共有x名同學,那么依題意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2109.如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.310.如圖,AB是⊙O的直徑,點C、D是圓上兩點,且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°二、填空題(本大題共6個小題,每小題3分,共18分)11.方程組的解一定是方程_____與_____的公共解.12.分解因式:_____.13.在Rt△ABC中,∠C=90°,AB=6,cosB=,則BC的長為_____.14.三個小伙伴各出資a元,共同購買了價格為b元的一個籃球,還剩下一點錢,則剩余金額為__元(用含a、b的代數(shù)式表示)15.分解因式x2﹣x=_______________________16.如圖,直線a,b被直線c所截,a∥b,∠1=∠2,若∠3=40°,則∠4等于________.三、解答題(共8題,共72分)17.(8分)如圖1,□OABC的邊OC在y軸的正半軸上,OC=3,A(2,1),反比例函數(shù)y=(x>0)的圖象經(jīng)過點B.(1)求點B的坐標和反比例函數(shù)的關系式;(2)如圖2,將線段OA延長交y=(x>0)的圖象于點D,過B,D的直線分別交x軸、y軸于E,F(xiàn)兩點,①求直線BD的解析式;②求線段ED的長度.18.(8分)閱讀材料,解答下列問題:神奇的等式當a≠b時,一般來說會有a2+b≠a+b2,然而當a和b是特殊的分數(shù)時,這個等式卻是成立的例如:()2+=+,()2+=+,()2+=+()2,…()2+=+()2,…(1)特例驗證:請再寫出一個具有上述特征的等式:;(2)猜想結(jié)論:用n(n為正整數(shù))表示分數(shù)的分母,上述等式可表示為:;(3)證明推廣:①(2)中得到的等式一定成立嗎?若成立,請證明;若不成立,說明理由;②等式()2+=+()2(m,n為任意實數(shù),且n≠0)成立嗎?若成立,請寫出一個這種形式的等式(要求m,n中至少有一個為無理數(shù));若不成立,說明理由.19.(8分)如圖,AC⊥BD,DE交AC于E,AB=DE,∠A=∠D.求證:AC=AE+BC.20.(8分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.21.(8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當∠B=140°時,求∠BAE的度數(shù).22.(10分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉(zhuǎn)60°得到點E,連接CE.(1)當點E在BC邊上時,畫出圖形并求出∠BAD的度數(shù);(2)當△CDE為等腰三角形時,求∠BAD的度數(shù);(3)在點D的運動過程中,求CE的最小值.(參考數(shù)值:sin75°=,cos75°=,tan75°=)23.(12分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機摸出一個球,這個球是白球的概率為.求袋子中白球的個數(shù);(請通過列式或列方程解答)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)24.為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關系,部分數(shù)據(jù)如表:天數(shù)(x)13610每件成本p(元)7.58.51012任務完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關系:y=,設李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.直接寫出p與x,W與x之間的函數(shù)關系式,并注明自變量x的取值范圍:求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?任務完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】∵①;②;③;④;∴上述各式中計算結(jié)果為負數(shù)的有2個.故選B.2、D【解析】

根據(jù)圖形可知,a是一個負數(shù),并且它的絕對是大于1小于2,b是一個正數(shù),并且它的絕對值是大于0小于1,即可得出|b|<|a|.【詳解】A選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),但表示它們的點到原點的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯誤;B選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而正數(shù)都大于負數(shù),故B錯誤;C選項:由圖中信息可知,實數(shù)a為負數(shù),實數(shù)b為正數(shù),而異號兩數(shù)相乘積為負,負數(shù)都小于0,故C錯誤;D選項:由圖中信息可知,表示實數(shù)a的點到原點的距離大于表示實數(shù)b的點到原點的距離,而在數(shù)軸上表示一個數(shù)的點到原點的距離越遠其絕對值越大,故D正確.∴選D.3、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.4、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數(shù)圖象.5、A【解析】

根據(jù)有理數(shù)的加法法則進行計算即可.【詳解】故選:A.【點睛】本題主要考查有理數(shù)的加法,掌握有理數(shù)的加法法則是解題的關鍵.6、C【解析】

先根據(jù)規(guī)定得出函數(shù)y=2★x的解析式,再利用一次函數(shù)與反比例函數(shù)的圖象性質(zhì)即可求解.【詳解】由題意,可得當2<x,即x>2時,y=2+x,y是x的一次函數(shù),圖象是一條射線除去端點,故A、D錯誤;當2≥x,即x≤2時,y=﹣,y是x的反比例函數(shù),圖象是雙曲線,分布在第二、四象限,其中在第四象限時,0<x≤2,故B錯誤.故選:C.【點睛】本題考查了新定義,函數(shù)的圖象,一次函數(shù)與反比例函數(shù)的圖象性質(zhì),根據(jù)新定義得出函數(shù)y=2★x的解析式是解題的關鍵.7、B【解析】一元二次方程的根的情況與根的判別式有關,,方程有兩個不相等的實數(shù)根,故選B8、B【解析】

設全組共有x名同學,那么每名同學送出的圖書是(x?1)本;則總共送出的圖書為x(x?1);又知實際互贈了210本圖書,則x(x?1)=210.故選:B.9、C【解析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關鍵.10、C【解析】

由∠AOC=126°,可求得∠BOC的度數(shù),然后由圓周角定理,求得∠CDB的度數(shù).【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.二、填空題(本大題共6個小題,每小題3分,共18分)11、5x﹣3y=83x+8y=9【解析】

方程組的解一定是方程5x﹣3y=8與3x+8y=9的公共解.故答案為5x﹣3y=8;3x+8y=9.12、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式2后繼續(xù)應用完全平方公式分解即可:.13、4【解析】

根據(jù)銳角的余弦值等于鄰邊比對邊列式求解即可.【詳解】∵∠C=90°,AB=6,∴,∴BC=4.【點睛】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義是解答本題的關鍵.在Rt△ABC中,,,.14、(3a﹣b)【解析】解:由題意可得,剩余金額為:(3a-b)元,故答案為:(3a-b).點睛:本題考查列代數(shù)式,解答本題的關鍵是明確題意,列出相應的代數(shù)式.15、x(x-1)【解析】x2﹣x=x(x-1).故答案是:x(x-1).16、70°【解析】

試題分析:由平角的定義可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因為a∥b,所以∠4=∠1=70°.故答案為70°.考點:角的計算;平行線的性質(zhì).三、解答題(共8題,共72分)17、(1)B(2,4),反比例函數(shù)的關系式為y=;(2)①直線BD的解析式為y=-x+6;②ED=2【解析】試題分析:(1)過點A作AP⊥x軸于點P,由平行四邊形的性質(zhì)可得BP=4,可得B(2,4),把點B坐標代入反比例函數(shù)解析式中即可;(2)①先求出直線OA的解析式,和反比例函數(shù)解析式聯(lián)立,解方程組得到點D的坐標,再由待定系數(shù)法求得直線BD的解析式;②先求得點E的坐標,過點D分別作x軸的垂線,垂足為G(4,0),由溝谷定理即可求得ED長度.試題解析:(1)過點A作AP⊥x軸于點P,則AP=1,OP=2,又∵AB=OC=3,∴B(2,4).,∵反比例函數(shù)y=(x>0)的圖象經(jīng)過的B,∴4=,∴k=8.∴反比例函數(shù)的關系式為y=;(2)①由點A(2,1)可得直線OA的解析式為y=x.解方程組,得,.∵點D在第一象限,∴D(4,2).由B(2,4),點D(4,2)可得直線BD的解析式為y=-x+6;②把y=0代入y=-x+6,解得x=6,∴E(6,0),過點D分別作x軸的垂線,垂足分別為G,則G(4,0),由勾股定理可得:ED=.點睛:本題考查一次函數(shù)、反比例函數(shù)、平行四邊形等幾何知識,綜合性較強,要求學生有較強的分析問題和解決問題的能力.18、(1)()1+=+()1;;(1)()1+=+()1;;(3)①成立,理由見解析;②成立,理由見解析.【解析】

(1)根據(jù)題目中的等式列出相同特征的等式即可;(1)根據(jù)題意找出等式特征并用n表達即可;(3)①先后證明左右兩邊的等式的結(jié)果,如果結(jié)果相同則成立;②先證明等式是否成立,如果成立再根據(jù)等式的特征寫出m,n至少有一個為無理數(shù)的等式.【詳解】解:(1)具有上述特征的等式可以是()1+=+()1,故答案為()1+=+()1;(1)上述等式可表示為()1+=+()1,故答案為()1+=+()1;(3)①等式成立,證明:∵左邊=()1+=+=,右邊=+()1=,∴左邊=右邊,∴等式成立;②此等式也成立,例如:()1+=+()1.【點睛】本題考查了規(guī)律的知識點,解題的關鍵是根據(jù)題目中的等式找出其特征.19、見解析.【解析】

由“SAS”可證△ABC≌△DEC,可得BC=CE,即可得結(jié)論.【詳解】證明:∵AB=DE,∠A=∠D,∠ACB=∠DCE=90°∴△ABC≌△DEC(SAS)∴BC=CE,∵AC=AE+CE∴AC=AE+BC【點睛】本題考查了全等三角形的判定和性質(zhì),熟練運用全等三角形的性質(zhì)是本題的關鍵.20、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】

(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∠DCF=45°,設∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉(zhuǎn)45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【點睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質(zhì)等,掌握等底高三角形的性質(zhì)是解題的關鍵.21、(1)詳見解析;(2)80°.【分析】(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應角相等,運用五邊形內(nèi)角和,即可得到∠BAE的度數(shù).【解析】

(1)根據(jù)∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,進而運用SAS即可判定全等三角形;(2)根據(jù)全等三角形對應角相等,運用五邊形內(nèi)角和,即可得到∠BAE的度數(shù).【詳解】證明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);解:(2)當∠B=140°時,∠E=140°,又∵∠BCD=∠EDC=90°,∴五邊形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.【點睛】考點:全等三角形的判定與性質(zhì).22、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解析】

(1)如圖1中,當點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形.②如圖3中,當CD=CE時,△DEC是等腰三角形;(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【詳解】解:(1)如圖1中,當點E在BC上時.

∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形,∠BAD=∠BAC=45°.

②如圖3中,當CD=CE時,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.

(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.

∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),∴EC的最小值即為線段CM的長(垂線段最短),設E′N=CN=a,則AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+=,∴a=2-,∴CE′=CN=2-.在Rt△CE′M中,CM=CE′?cos30°=,∴CE的最小值為.【點睛】本題考查幾何變換綜合題、等腰直角三角形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、軌跡等知識,解題的關鍵是靈活運用所學知識解決問題,學會用分類討論的思想思考問題,學會利用垂線段最短解決最值問題,屬于中考壓軸題.23、(1)袋子中白球有2個;(2)見解析,.【解析】

(1)首先設袋子中白球有x個,利用概率公式求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論