2024屆浙江省臺州市海山教育聯(lián)盟重點中學中考聯(lián)考數(shù)學試題含解析_第1頁
2024屆浙江省臺州市海山教育聯(lián)盟重點中學中考聯(lián)考數(shù)學試題含解析_第2頁
2024屆浙江省臺州市海山教育聯(lián)盟重點中學中考聯(lián)考數(shù)學試題含解析_第3頁
2024屆浙江省臺州市海山教育聯(lián)盟重點中學中考聯(lián)考數(shù)學試題含解析_第4頁
2024屆浙江省臺州市海山教育聯(lián)盟重點中學中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省臺州市海山教育聯(lián)盟重點中學中考聯(lián)考數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一個容量為50的樣本,在整理頻率分布時,將所有頻率相加,其和是()A.50B.0.02C.0.1D.12.如圖,中,,,將繞點逆時針旋轉(zhuǎn)得到,使得,延長交于點,則線段的長為()A.4 B.5 C.6 D.73.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.54.的絕對值是()A. B. C. D.5.如圖,小橋用黑白棋子組成的一組圖案,第1個圖案由1個黑子組成,第2個圖案由1個黑子和6個白子組成,第3個圖案由13個黑子和6個白子組成,按照這樣的規(guī)律排列下去,則第8個圖案中共有(

)和黑子.A.37 B.42 C.73 D.1216.如圖,正方形ABCD的頂點C在正方形AEFG的邊AE上,AB=2,AE=,則點G到BE的距離是()A. B. C. D.7.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為()A. B. C. D.8.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<yA.①② B.②③ C.②④ D.①③④9.某廠接到加工720件衣服的訂單,預計每天做48件,正好按時完成,后因客戶要求提前5天交貨,設每天應多做x件才能按時交貨,則x應滿足的方程為()A. B.C. D.10.如圖是由三個相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,?ABCD中,AC⊥CD,以C為圓心,CA為半徑作圓弧交BC于E,交CD的延長線于點F,以AC上一點O為圓心OA為半徑的圓與BC相切于點M,交AD于點N.若AC=9cm,OA=3cm,則圖中陰影部分的面積為_____cm1.12.一個圓錐的母線長為5cm,底面半徑為1cm,那么這個圓錐的側(cè)面積為_____cm1.13.某校廣播臺要招聘一批小主持人,對A、B兩名小主持人進行了專業(yè)素質(zhì)、創(chuàng)新能力、外語水平和應變能力進行了測試,他們各項的成績(百分制)如表所示:應聘者專業(yè)素質(zhì)創(chuàng)新能力外語水平應變能力A73857885B81828075如果只招一名主持人,該選用______;依據(jù)是_____.(答案不唯一,理由支撐選項即可)14.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.15.在平面直角坐標系中,智多星做走棋的游戲,其走法是:棋子從原點出發(fā),第1步向上走1個單位,第2步向上走2個單位,第3步向右走1個單位,第4步向上走1個單位……依此類推,第n步的走法是:當n被3除,余數(shù)為2時,則向上走2個單位;當走完第2018步時,棋子所處位置的坐標是_____16.如圖,在平面直角坐標系中,⊙P的圓心在x軸上,且經(jīng)過點A(m,﹣3)和點B(﹣1,n),點C是第一象限圓上的任意一點,且∠ACB=45°,則⊙P的圓心的坐標是_____.17.如圖,直線m∥n,以直線m上的點A為圓心,適當長為半徑畫弧,分別交直線m,n于點B、C,連接AC、BC,若∠1=30°,則∠2=_____.三、解答題(共7小題,滿分69分)18.(10分)圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,求操作平臺C離地面的高度(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)19.(5分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.20.(8分)如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,連接AP,交CD于點M,若∠ACD=110°,求∠CMA的度數(shù)______.21.(10分)已知:二次函數(shù)圖象的頂點坐標是(3,5),且拋物線經(jīng)過點A(1,3).(1)求此拋物線的表達式;(2)如果點A關于該拋物線對稱軸的對稱點是B點,且拋物線與y軸的交點是C點,求△ABC的面積.22.(10分)數(shù)學課上,李老師和同學們做一個游戲:他在三張硬紙片上分別寫出一個代數(shù)式,背面分別標上序號①、②、③,擺成如圖所示的一個等式,然后翻開紙片②是4x1+5x+6,翻開紙片③是3x1﹣x﹣1.解答下列問題求紙片①上的代數(shù)式;若x是方程1x=﹣x﹣9的解,求紙片①上代數(shù)式的值.23.(12分)如圖,Rt△ABC的兩直角邊AC邊長為4,BC邊長為3,它的內(nèi)切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點D、E、F,延長CO交斜邊AB于點G.(1)求⊙O的半徑長;(2)求線段DG的長.24.(14分)2019年我市在“展銷會”期間,對周邊道路進行限速行駛.道路AB段為監(jiān)測區(qū),C、D為監(jiān)測點(如圖).已知C、D、B在同一條直線上,且,CD=400米,,.求道路AB段的長;(精確到1米)如果AB段限速為60千米/時,一輛車通過AB段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數(shù)據(jù):,,)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】所有小組頻數(shù)之和等于數(shù)據(jù)總數(shù),所有頻率相加等于1.2、B【解析】

先利用已知證明,從而得出,求出BD的長度,最后利用求解即可.【詳解】故選:B.【點睛】本題主要考查相似三角形的判定及性質(zhì),掌握相似三角形的性質(zhì)是解題的關鍵.3、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B4、C【解析】

根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義即可解決.【詳解】在數(shù)軸上,點到原點的距離是,所以,的絕對值是,故選C.【點睛】錯因分析

容易題,失分原因:未掌握絕對值的概念.5、C【解析】解:第1、2圖案中黑子有1個,第3、4圖案中黑子有1+2×6=13個,第5、6圖案中黑子有1+2×6+4×6=37個,第7、8圖案中黑子有1+2×6+4×6+6×6=73個.故選C.點睛:本題考查了規(guī)律型:圖形的變化類:通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.6、A【解析】

根據(jù)平行線的判定,可得AB與GE的關系,根據(jù)平行線間的距離相等,可得△BEG與△AEG的關系,根據(jù)根據(jù)勾股定理,可得AH與BE的關系,再根據(jù)勾股定理,可得BE的長,根據(jù)三角形的面積公式,可得G到BE的距離.【詳解】連接GB、GE,由已知可知∠BAE=45°.又∵GE為正方形AEFG的對角線,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB與GE間的距離相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.過點B作BH⊥AE于點H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.設點G到BE的距離為h.∴S△BEG=?BE?h=×2×h=1.∴h=.即點G到BE的距離為.故選A.【點睛】本題主要考查了幾何變換綜合題.涉及正方形的性質(zhì),全等三角形的判定及性質(zhì),等積式及四點共圓周的知識,綜合性強.解題的關鍵是運用等積式及四點共圓的判定及性質(zhì)求解.7、C【解析】

先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).8、C【解析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質(zhì),屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.9、D【解析】

因客戶的要求每天的工作效率應該為:(48+x)件,所用的時間為:,根據(jù)“因客戶要求提前5天交貨”,用原有完成時間減去提前完成時間,可以列出方程:.故選D.10、C【解析】分析:細心觀察圖中幾何體中正方體擺放的位置,根據(jù)左視圖是從左面看到的圖形判定則可.詳解:從左邊看豎直疊放2個正方形.故選:C.點睛:此題考查了幾何體的三種視圖和學生的空間想象能力,左視圖是從物體左面看所得到的圖形,解答時學生易將三種視圖混淆而錯誤的選其它選項.二、填空題(共7小題,每小題3分,滿分21分)11、11π﹣.【解析】

陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積.【詳解】解:連接OM,ON.∴OM=3,OC=6,∴∴∴扇形ECF的面積△ACD的面積扇形AOM的面積弓形AN的面積△OCM的面積∴陰影部分的面積=扇形ECF的面積?△ACD的面積?△OCM的面積?扇形AOM的面積?弓形AN的面積故答案為.【點睛】考查不規(guī)則圖形的面積的計算,掌握扇形的面積公式是解題的關鍵.12、【解析】分析:根據(jù)圓錐的側(cè)面展開圖為扇形,先計算出圓錐的底面圓的周長,然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長=1π?5=10π,∴圓錐的側(cè)面積=?10π?1=10π(cm1).故答案為10π.點睛:本題考查了圓錐的側(cè)面積的計算:圓錐的側(cè)面展開圖為扇形,扇形的弧長為圓錐的底面周長,扇形的半徑為圓錐的母線長.也考查了扇形的面積公式:S=?l?R,(l為弧長).13、AA的平均成績高于B平均成績【解析】

根據(jù)表格求出A,B的平均成績,比較大小即可解題.【詳解】解:A的平均數(shù)是80.25,B的平均數(shù)是79.5,∴A比B更優(yōu)秀,∴如果只招一名主持人,該選用A;依據(jù)是A的平均成績高于B平均成績.【點睛】本題考查了平均數(shù)的實際應用,屬于簡單題,從表格中找到有用信息是解題關鍵.14、2.【解析】

把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為:2.【點睛】本題考查了求代數(shù)式的值和一元二次方程的解,解此題的關鍵是能求出2m2﹣3m=2.15、(672,2019)【解析】分析:按照題目給定的規(guī)則,找到周期,由題意可得每三步是一個循環(huán),所以只需要計算2018被3除,就可以得到棋子的位置.詳解:解:由題意得,每3步為一個循環(huán)組依次循環(huán),且一個循環(huán)組內(nèi)向右1個單位,向上3個單位,∵2018÷3=672…2,∴走完第2018步,為第673個循環(huán)組的第2步,所處位置的橫坐標為672,縱坐標為672×3+3=2019,∴棋子所處位置的坐標是(672,2019).故答案為:(672,2019).點睛:周期問題解決問題的核心是要找到最小正周期,然后把給定的數(shù)(一般是一個很大的數(shù))除以最小正周期,余數(shù)是幾,就是第幾步,特別余數(shù)是1,就是第一步,余數(shù)是0,就是最后一步.16、(2,0)【解析】【分析】作輔助線,構建三角形全等,先根據(jù)同弧所對的圓心角是圓周角的二倍得:∠APB=90°,再證明△BPE≌△PAF,根據(jù)PE=AF=3,列式可得結(jié)論.【詳解】連接PB、PA,過B作BE⊥x軸于E,過A作AF⊥x軸于F,∵A(m,﹣3)和點B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,設P(a,0),∴a+1=3,a=2,∴P(2,0),故答案為(2,0).【點睛】本題考查了圓周角定理和坐標與圖形性質(zhì),三角形全等的性質(zhì)和判定,作輔助線構建三角形全等是關鍵.17、75°【解析】試題解析:∵直線l1∥l2,∴故答案為三、解答題(共7小題,滿分69分)18、操作平臺C離地面的高度為7.6m.【解析】分析:作CE⊥BD于F,AF⊥CE于F,如圖2,易得四邊形AHEF為矩形,則EF=AH=3.4m,∠HAF=90°,再計算出∠CAF=28°,則在Rt△ACF中利用正弦可計算出CF,然后計算CF+EF即可.詳解:作CE⊥BD于F,AF⊥CE于F,如圖2,易得四邊形AHEF為矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平臺C離地面的高度為7.6m.點睛:本題考查了解直角三角形的應用:先將實際問題抽象為數(shù)學問題(畫出平面圖形,構造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用勾股定理和三角函數(shù)的定義進行幾何計算.19、(1)直線的解析式為:.(2)平移的時間為5秒.【解析】

(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【點睛】本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.20、∠CMA=35°.【解析】

根據(jù)兩直線平行,同旁內(nèi)角互補得出,再根據(jù)是的平分線,即可得出的度數(shù),再由兩直線平行,內(nèi)錯角相等即可得出結(jié)論.【詳解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分線,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【點睛】本題考查了角平分線的作法和意義,平行線的性質(zhì)等知識解決問題.解題時注意:兩直線平行,內(nèi)錯角相等.21、(1)y=-(x-3)2+5(2)5【解析】

(1)設頂點式y(tǒng)=a(x-3)2+5,然后把A點坐標代入求出a即可得到拋物線的解析式;

(2)利用拋物線的對稱性得到B(5,3),再確定出C點坐標,然后根據(jù)三角形面積公式求解.【詳解】(1)設此拋物線的表達式為y=a(x-3)2+5,將點A(1,3)的坐標代入上式,得3=a(1-3)2+5,解得∴此拋物線的表達式為(2)∵A(1,3),拋物線的對稱軸為直線x=3,∴B(5,3).令x=0,則∴△ABC的面積【點睛】考查待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象上點的坐標特征,掌握待定系數(shù)法求二次函數(shù)的解析式是解題的關鍵.22、(1)7x1+4x+4;(1)55.【解析】

(1)根據(jù)整式加法的運算法則,將(4x1+5x+6)+(3x1﹣x﹣1)即可求得紙片①上的代數(shù)式;(1)先解方程1x=﹣x﹣9,再代入紙片①的代數(shù)式即可求解.【詳解】解:(1)紙片①上的代數(shù)式為:(4x1+5x+6)+(3x1﹣x﹣1)=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論