版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年江蘇省鹽城市新豐中學(xué)高二數(shù)學(xué)文下學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.若=(-1,1,3),=(2,-2,),且//
,則=(
)
A.3
B.-3
C.6
D.-6參考答案:D略2.已知點(diǎn)P在曲線上移動(dòng),設(shè)曲線在點(diǎn)P處的切線斜率為k,則k的取值范圍是(
)A.(-∞,-1] B.[-1,+∞) C.(-∞,-1) D.(-1,+∞)參考答案:B【分析】點(diǎn)P在函數(shù)圖像上移動(dòng)即表示函數(shù)P為函數(shù)圖像上任意一點(diǎn),所以直接對(duì)函數(shù)求導(dǎo),然后找到導(dǎo)數(shù)的取值范圍即為切線斜率的取值范圍?!驹斀狻恳?yàn)?,所以恒成立,故切線斜率,故選B。【點(diǎn)睛】本題考查導(dǎo)數(shù)定義:函數(shù)在某一點(diǎn)的導(dǎo)數(shù)即為函數(shù)圖像在該點(diǎn)切線的斜率。3.設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)M(﹣1,0)的直線在第一象限交拋物線于A、B,使,則直線AB的斜率k=()A. B. C. D.參考答案:B【考點(diǎn)】直線與圓錐曲線的關(guān)系.【分析】由題意可得直線AB的方程y﹣0=k(x+1),k>0,代入拋物線y2=4x化簡求得x1+x2和x1?x2,進(jìn)而得到y(tǒng)1+y2和y1?y2,由,解方程求得k的值.【解答】解:拋物線y2=4x的焦點(diǎn)F(1,0),直線AB的方程y﹣0=k(x+1),k>0.代入拋物線y2=4x化簡可得k2x2+(2k2﹣4)x+k2=0,∴x1+x2=,x1?x2=1.∴y1+y2=k(x1+1)+k(x2+1)=+2k=,y1?y2=k2(x1+x2+x1?x2+1)=4.又=(x1﹣1,y1)?(x2﹣1,y2)=x1?x2﹣(x1+x2)+1+y1?y2=8﹣,∴k=,故選:B.4.直線y=kx+3與圓(x﹣2)2+(y﹣3)2=4相交于M,N兩點(diǎn),若,則k的取值范圍是()A. B. C. D.參考答案:B【考點(diǎn)】直線和圓的方程的應(yīng)用.【分析】直線與圓相交,有兩個(gè)公共點(diǎn),設(shè)弦長為L,弦心距為d,半徑為r,則可構(gòu)建直角三角形,從而將問題仍然轉(zhuǎn)化為點(diǎn)線距離問題.【解答】解:圓(x﹣2)2+(y﹣3)2=4的圓心為(2,3),半徑等于2,圓心到直線y=kx+3的距離等于d=由弦長公式得MN=2≥2,∴≤1,解得,故選B.5.已知數(shù)列滿足,則
(
)A.
B.
C.
D.參考答案:D6.定積分的值為(
)A.e-2
B.e-1
C.e
D.e+1參考答案:A7.數(shù)列{an}的通項(xiàng)公式為,則{an}的前8項(xiàng)之和為(
)A.
B.
C.
D.參考答案:C8.下列說法中,正確的是(
)A.命題“若,則”的否命題是真命題B.為不同的平面,直線,則“”是“”成立的充要條件C.命題“存在”的否定是“對(duì)任意”D.已知,則“”是“”的充分不必要條件參考答案:A略9.如圖,一只螞蟻從點(diǎn)A出發(fā)沿著水平面的線條爬行到點(diǎn)C,再由點(diǎn)C沿著置于水平面的長方體的棱爬行至頂點(diǎn)B,則它可以爬行的不同的最短路徑有()條.A.40 B.60 C.80 D.120參考答案:B【考點(diǎn)】多面體和旋轉(zhuǎn)體表面上的最短距離問題.【分析】由題意,從A到C最短路徑有C53=10條,由點(diǎn)C沿著置于水平面的長方體的棱爬行至頂點(diǎn)B,最短路徑有C42=6條,即可求出它可以爬行的不同的最短路徑.【解答】解:由題意,從A到C最短路徑有C53=10條,由點(diǎn)C沿著置于水平面的長方體的棱爬行至頂點(diǎn)B,最短路徑有C42=6條,∴它可以爬行的不同的最短路徑有10×6=60條,故選B.10.函數(shù)的部分圖像大致為(
)A. B. C. D.參考答案:A【分析】由函數(shù)的表達(dá)式確定函數(shù)的性質(zhì),運(yùn)用導(dǎo)數(shù)求出極值,從而利用數(shù)形結(jié)合確定函數(shù)的圖象的形狀.【詳解】解:,函數(shù)是偶函數(shù),的圖象關(guān)于y軸對(duì)稱,故排除B,又,故排除D.在時(shí)取最小值,即時(shí)取最小值,解得x=,此時(shí)故排除C.故選:A.二、填空題:本大題共7小題,每小題4分,共28分11.在大小相同的6個(gè)球中,2個(gè)是紅球,4個(gè)是白球.若從中任意選取3個(gè),則所選的3個(gè)球中至少有1個(gè)紅球的概率是________.(結(jié)果用分?jǐn)?shù)表示)參考答案:試題分析:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是從6個(gè)球中取3個(gè),共有種結(jié)果,而滿足條件的事件是所選的3個(gè)球中至少有1個(gè)紅球,包括有一個(gè)紅球2個(gè)白球;2個(gè)紅球一個(gè)白球,共有∴所選的3個(gè)球中至少有1個(gè)紅球的概率是.考點(diǎn):等可能事件的概率.12.關(guān)于的一元二次方程沒有實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是
.參考答案:13.一個(gè)均勻小正方體的六個(gè)面中,三個(gè)面上標(biāo)以數(shù)0,兩個(gè)面上標(biāo)以數(shù)1,一個(gè)面上標(biāo)以數(shù)2,將這個(gè)小正方體拋擲2次,則向上的數(shù)之積的數(shù)學(xué)期望是
參考答案:14.命題p:“?x0∈R,x02﹣1≤0”的否定¬p為參考答案:命題p:“?x0∈R,x02﹣1≤0”的否定¬p為:,故填.
15.如下圖,在三角形中,,分別為,的中點(diǎn),為上的點(diǎn),且.若
,則實(shí)數(shù)
,實(shí)數(shù)
.參考答案:2,116.若,則的最小值是_____________
參考答案:略17.(5分)(2011?福建模擬)在△ABC中,若a=7,b=8,,則最大角的余弦值是
.參考答案:【考點(diǎn)】余弦定理.【專題】計(jì)算題.【分析】先利用余弦定理求得邊c的長度,進(jìn)而根據(jù)大角對(duì)大邊的原則推斷出B為最大角,最后利用余弦定理求得cosB的值.【解答】解:c==3,∴b邊最大,∴B為最大角,cosB==﹣,故答案為﹣.【點(diǎn)評(píng)】本題主要考查了余弦定理的應(yīng)用.解題的關(guān)鍵是判斷出三角形中的最大角.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本題滿分13分)已知{an}是等差數(shù)列,其中a1=25,a4=16.(1)求{an}的通項(xiàng);
(2)求|a1|+|a2|+|a3|+…+|an|的值.參考答案:解:(1)∵a4=a1+3d,∴d=-3,∴an=a1+(n-1)d=28-3n.(2)由an=28-3n.≥0,得,即數(shù)列{an}前9項(xiàng)為正,從第10項(xiàng)開始小于0,
,當(dāng)n≤9時(shí),|a1|+|a2|+…+|an|=a1+a2+…+an;當(dāng)n≥10時(shí),|a1|+|a2|+…+|an|=(|a1|+|a2|+…+|a9|)+(|a10|+|a11|+…+|an|).∴|a1|+|a2|+…+|an|=.19.已知函數(shù)的定義域?yàn)榧螦,集合B={<0}.
(1)當(dāng)時(shí),求AB;
(2)求使BA的實(shí)數(shù)的取值范圍。參考答案:解:(1)當(dāng)時(shí),
AB={|3<<10}
(2)
B={|<<2+1}
1o若時(shí),A=Ф,不存在使BA
2o若>時(shí),
要使BA,必須
解得2≤≤3
3o若<時(shí),,要使BA,必須
解得
,故的范圍
略20.(本題滿分12分)二次函數(shù)(1)若,求函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn)的概率;(2)若,求函數(shù)在上為減函數(shù)的概率.參考答案:(1)從集合任取一個(gè)數(shù),從幾何任取一個(gè)數(shù),組成所有數(shù)對(duì)為共6個(gè).由,即
滿足的數(shù)對(duì)有共2個(gè),所以,滿足條件的概率.(2)由已知:又即
試驗(yàn)全部結(jié)果所構(gòu)成的區(qū)域?yàn)槭录昂瘮?shù)”構(gòu)成區(qū)域,如圖
故所求概率為21.己知命題p:方程+=1表示焦點(diǎn)在x軸上的橢圓;命題q:點(diǎn)(m,3)在圓(x﹣10)2+(y﹣1)2=13內(nèi).若p∨q為真命題,p∧q為假命題,試求實(shí)數(shù)m的取值范圍.參考答案:【考點(diǎn)】復(fù)合命題的真假.【分析】先求出命題p,q為真命題的等價(jià)條件,然后根據(jù)若p∨q為真命題,p∧q為假命題,得到命題p,q為一真一假,然后求出實(shí)數(shù)m的取值范圍.【解答】解:方程+=1表示焦點(diǎn)在x軸上的橢圓,則,解得,即4<m<8.即p:4<m<8.若(m,3)在圓(x﹣10)2+(y﹣1)2=13,則<,即(m﹣10)2<9,即﹣3<m﹣10<3,所以7<m<13.即q:7<m<13.若p∨q為真命題,p∧q為假命題,得到命題p,q為一真一假,若p真q假,則,解得4<m≤7.若p假q真,則,解得8≤m<13.綜上實(shí)數(shù)m的取值范圍是4<m≤7或8≤m<13.【點(diǎn)評(píng)】本題主要考查復(fù)合命題真假判斷,根據(jù)條件求出命題p,q為真命題時(shí)的等價(jià)條件是解決本題的關(guān)鍵.22.已知θ∈(0,π),求:(1)sinθ?cosθ;(2)sinθ﹣cosθ.參考答案:【考點(diǎn)】GL:三角函數(shù)中的恒等變換應(yīng)用;GS:二倍角的正弦.【分析】(1)把題設(shè)等式兩邊平方后,利用同角三角函數(shù)的基本關(guān)系求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 圓周接力課件教學(xué)課件
- 2024乙丙雙方關(guān)于智能家居系統(tǒng)安裝與維護(hù)的合同
- 2024保險(xiǎn)合同保險(xiǎn)標(biāo)的及屬性規(guī)定
- 2024年司機(jī)配駕汽車租賃合同標(biāo)準(zhǔn)版
- 2024年度工程建設(shè)項(xiàng)目融資擔(dān)保合同
- 2024年居住區(qū)綠化托管協(xié)議
- 2024年廣告制作委托合同
- 2024年展覽廳知識(shí)產(chǎn)權(quán)保護(hù)合同
- 2024國有土地使用權(quán)合同解釋國有土地使用權(quán)收購合同
- 2024年度汽車銷售業(yè)績獎(jiǎng)勵(lì)合同
- 醫(yī)科大學(xué)2024年12月精神科護(hù)理學(xué)作業(yè)考核試題答卷
- 論青少年合理懷疑精神的培育
- 機(jī)關(guān)干部禮儀培訓(xùn)課件
- 安徽省合肥市2024年七年級(jí)上學(xué)期期中數(shù)學(xué)試卷【附答案】
- 2024-2025學(xué)年浙教版八年級(jí)上冊(cè)科學(xué)期中模擬卷
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評(píng)價(jià)導(dǎo)則
- 智能制造工程生涯發(fā)展報(bào)告
- 二級(jí)公立醫(yī)院績效考核三級(jí)手術(shù)目錄(2020版)
- 品牌授權(quán)工廠生產(chǎn)授權(quán)書合同
- 6人小品《沒有學(xué)習(xí)的人不傷心》臺(tái)詞完整版
- 銷售配合與帶動(dòng)-培訓(xùn)PPT課件
評(píng)論
0/150
提交評(píng)論