2024屆江蘇省大豐市萬盈初級中學中考數學押題試卷含解析_第1頁
2024屆江蘇省大豐市萬盈初級中學中考數學押題試卷含解析_第2頁
2024屆江蘇省大豐市萬盈初級中學中考數學押題試卷含解析_第3頁
2024屆江蘇省大豐市萬盈初級中學中考數學押題試卷含解析_第4頁
2024屆江蘇省大豐市萬盈初級中學中考數學押題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省大豐市萬盈初級中學中考數學押題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,以正方形ABCD的邊CD為邊向正方形ABCD外作等邊△CDE,AC與BE交于點F,則∠AFE的度數是()A.135° B.120° C.60° D.45°2.如圖,若a∥b,∠1=60°,則∠2的度數為()A.40° B.60° C.120° D.150°3.中國古代人民很早就在生產生活中發(fā)現了許多有趣的數學問題,其中《孫子算經》中有個問題:今有三人共車,二車空;二人共車,九人步,問人與車各幾何?這道題的意思是:今有若干人乘車,每三人乘一車,最終剩余2輛車,若每2人共乘一車,最終剩余9個人無車可乘,問有多少人,多少輛車?如果我們設有輛車,則可列方程()A. B.C. D.4.如圖,點M為?ABCD的邊AB上一動點,過點M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點N.當點M從A→B勻速運動時,設點M的運動時間為t,△AMN的面積為S,能大致反映S與t函數關系的圖象是()A. B. C. D.5.一元二次方程的根的情況是()A.有一個實數根 B.有兩個相等的實數根C.有兩個不相等的實數根 D.沒有實數根6.下列哪一個是假命題()A.五邊形外角和為360°B.切線垂直于經過切點的半徑C.(3,﹣2)關于y軸的對稱點為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=27.已知二次函數的與的不符對應值如下表:且方程的兩根分別為,,下面說法錯誤的是().A., B.C.當時, D.當時,有最小值8.下列計算錯誤的是()A.4x3?2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b29.射擊訓練中,甲、乙、丙、丁四人每人射擊10次,平均環(huán)數均為8.7環(huán),方差分別為,,,,則四人中成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁10.隨著“中國詩詞大會”節(jié)目的熱播,《唐詩宋詞精選》一書也隨之熱銷.如果一次性購買10本以上,超過10本的那部分書的價格將打折,并依此得到付款金額y(單位:元)與一次性購買該書的數量x(單位:本)之間的函數關系如圖所示,則下列結論錯誤的是()A.一次性購買數量不超過10本時,銷售價格為20元/本B.a=520C.一次性購買10本以上時,超過10本的那部分書的價格打八折D.一次性購買20本比分兩次購買且每次購買10本少花80元二、填空題(本大題共6個小題,每小題3分,共18分)11.已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,起始狀態(tài)如圖所示,大正方形固定不動,把小正方形向右平移,當兩個正方形重疊部分的面積為2平方厘米時,小正方形平移的距離為_____厘米.12.函數中自變量x的取值范圍是_____;函數中自變量x的取值范圍是______.13.已知甲、乙兩組數據的折線圖如圖,設甲、乙兩組數據的方差分別為S甲2、S乙2,則S甲2__S乙2(填“>”、“=”、“<”)14.將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.15.已知x(x+1)=x+1,則x=________.16.如圖,已知直線m∥n,∠1=100°,則∠2的度數為_____.三、解答題(共8題,共72分)17.(8分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.(1)求拋物線的表達式;(2)設拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.(3)如圖2,連接BC,PB,PC,設△PBC的面積為S.①求S關于t的函數表達式;②求P點到直線BC的距離的最大值,并求出此時點P的坐標.18.(8分)未成年人思想道德建設越來越受到社會的關注,遼陽青少年研究所隨機調查了本市一中學100名學生寒假中花零花錢的數量(錢數取整數元),以便引導學生樹立正確的消費觀.根據調查數據制成了頻分組頻數頻率0.5~50.50.150.5~200.2100.5~150.5200.5300.3200.5~250.5100.1率分布表和頻率分布直方圖(如圖).(1)補全頻率分布表;(2)在頻率分布直方圖中,長方形ABCD的面積是;這次調查的樣本容量是;(3)研究所認為,應對消費150元以上的學生提出勤儉節(jié)約的建議.試估計應對該校1000名學生中約多少名學生提出這項建議.19.(8分)如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結FD、BE、BF,設OP=t.(1)直接寫出點E的坐標(用含t的代數式表示):;(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.20.(8分)某商場甲、乙、丙三名業(yè)務員2018年前5個月的銷售額(單位:萬元)如下表:月份銷售額人員第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根據上表中的數據,將下表補充完整:統計值數值人員平均數(萬元)眾數(萬元)中位數(萬元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名業(yè)務員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.21.(8分)(8分)如圖,在平面直角坐標系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數的解析式;(1)求△OCD的面積.22.(10分)如圖,在邊長為1個單位長度的小正方形網格中:(1)畫出△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1.(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請在網格中畫出△A2B2C2.(3)求△CC1C2的面積.23.(12分)在平面直角坐標系中,二次函數y=x2+ax+2a+1的圖象經過點M(2,-3)。(1)求二次函數的表達式;(2)若一次函數y=kx+b(k≠0)的圖象與二次函數y=x2+ax+2a+1的圖象經過x軸上同一點,探究實數k,b滿足的關系式;(3)將二次函數y=x2+ax+2a+1的圖象向右平移2個單位,若點P(x0,m)和Q(2,n)在平移后的圖象上,且m>n,結合圖象求x0的取值范圍.24.如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx+c經過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

易得△ABF與△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度數即可.【詳解】∵四邊形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故選B.【點睛】此題考查正方形的性質,熟練掌握正方形及等邊三角形的性質,會運用其性質進行一些簡單的轉化.2、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質,對頂角相等的性質,熟記性質是解題的關鍵.平行線的性質定理:兩直線平行,同位角相等,內錯角相等,同旁內角互補,兩條平行線之間的距離處處相等.3、A【解析】

根據每三人乘一車,最終剩余2輛車,每2人共乘一車,最終剩余1個人無車可乘,進而表示出總人數得出等式即可.【詳解】設有x輛車,則可列方程:

3(x-2)=2x+1.

故選:A.【點睛】此題主要考查了由實際問題抽象出一元一次方程,正確表示總人數是解題關鍵.4、C【解析】分析:本題需要分兩種情況來進行計算得出函數解析式,即當點N和點D重合之前以及點M和點B重合之前,根據題意得出函數解析式.詳解:假設當∠A=45°時,AD=2,AB=4,則MN=t,當0≤t≤2時,AM=MN=t,則S=,為二次函數;當2≤t≤4時,S=t,為一次函數,故選C.點睛:本題主要考查的就是函數圖像的實際應用問題,屬于中等難度題型.解答這個問題的關鍵就是得出函數關系式.5、D【解析】試題分析:△=22-4×4=-12<0,故沒有實數根;故選D.考點:根的判別式.6、C【解析】分析:根據每個選項所涉及的數學知識進行分析判斷即可.詳解:A選項中,“五邊形的外角和為360°”是真命題,故不能選A;B選項中,“切線垂直于經過切點的半徑”是真命題,故不能選B;C選項中,因為點(3,-2)關于y軸的對稱點的坐標是(-3,-2),所以該選項中的命題是假命題,所以可以選C;D選項中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質;(3)點P(a,b)關于y軸的對稱點為(-a,b);(4)拋物線的對稱軸是直線:等數學知識,是正確解答本題的關鍵.7、C【解析】

分別結合圖表中數據得出二次函數對稱軸以及圖像與x軸交點范圍和自變量x與y的對應情況,進而得出答案.【詳解】A、利用圖表中x=0,1時對應y的值相等,x=﹣1,2時對應y的值相等,∴x=﹣2,5時對應y的值相等,∴x=﹣2,y=5,故此選項正確;B、方程ax2+bc+c=0的兩根分別是x1、x2(x1<x2),且x=1時y=﹣1;x=2時,y=1,∴1<x2<2,故此選項正確;C、由題意可得出二次函數圖像向上,∴當x1<x<x2時,y<0,故此選項錯誤;D、∵利用圖表中x=0,1時對應y的值相等,∴當x=時,y有最小值,故此選項正確,不合題意.所以選C.【點睛】此題主要考查了拋物線與x軸的交點以及利用圖像上點的坐標得出函數的性質,利用數形結合得出是解題關鍵.8、B【解析】

根據單項式與單項式相乘,把他們的系數,相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式;合并同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變;冪的乘方法則:底數不變,指數相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧記為:“首平方,末平方,首末兩倍中間放”可得答案.【詳解】A選項:4x3?1x1=8x5,故原題計算正確;

B選項:a4和a3不是同類項,不能合并,故原題計算錯誤;

C選項:(-x1)5=-x10,故原題計算正確;

D選項:(a-b)1=a1-1ab+b1,故原題計算正確;

故選:B.【點睛】考查了整式的乘法,關鍵是掌握整式的乘法各計算法則.9、D【解析】

根據方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好可得答案.【詳解】∵0.45<0.51<0.62,∴丁成績最穩(wěn)定,故選D.【點睛】此題主要考查了方差,關鍵是掌握方差越小,穩(wěn)定性越大.10、D【解析】

A、根據單價=總價÷數量,即可求出一次性購買數量不超過10本時,銷售單價,A選項正確;C、根據單價=總價÷數量結合前10本花費200元即可求出超過10本的那部分書的單價,用其÷前十本的單價即可得出C正確;B、根據總價=200+超過10本的那部分書的數量×16即可求出a值,B正確;D,求出一次性購買20本書的總價,將其與400相減即可得出D錯誤.此題得解.【詳解】解:A、∵200÷10=20(元/本),∴一次性購買數量不超過10本時,銷售價格為20元/本,A選項正確;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性購買10本以上時,超過10本的那部分書的價格打八折,C選項正確;B、∵200+16×(30﹣10)=520(元),∴a=520,B選項正確;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性購買20本比分兩次購買且每次購買10本少花40元,D選項錯誤.故選D.【點睛】考查了一次函數的應用,根據一次函數圖象結合數量關系逐一分析四個選項的正誤是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1或5.【解析】

小正方形的高不變,根據面積即可求出小正方形平移的距離.【詳解】解:當兩個正方形重疊部分的面積為2平方厘米時,重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【點睛】此題考查了平移的性質,要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.12、x≠2x≥3【解析】

根據分式的意義和二次根式的意義,分別求解.【詳解】解:根據分式的意義得2-x≠0,解得x≠2;根據二次根式的意義得2x-6≥0,解得x≥3.故答案為:x≠2,x≥3.【點睛】數自變量的范圍一般從幾個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(2)當函數表達式是分式時,考慮分式的分母不能為0;(3)當函數表達式是二次根式時,被開方數為非負數.13、>【解析】

要比較甲、乙方差的大小,就需要求出甲、乙的方差;首先根據折線統計圖結合根據平均數的計算公式求出這兩組數據的平均數;接下來根據方差的公式求出甲、乙兩個樣本的方差,然后比較即可解答題目.【詳解】甲組的平均數為:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙組的平均數為:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案為:>.【點睛】本題考查的知識點是方差,算術平均數,折線統計圖,解題的關鍵是熟練的掌握方差,算術平均數,折線統計圖.14、40°【解析】

直接利用三角形內角和定理得出∠6+∠7的度數,進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,

∵∠1+∠2+∠3+∠4=220°,

∴∠1+∠2+∠6+∠3+∠4+∠7=360°,

∴∠6+∠7=140°,

∴∠5=180°-(∠6+∠7)=40°.

故答案為40°.【點睛】主要考查了三角形內角和定理,正確應用三角形內角和定理是解題關鍵.15、1或-1【解析】方程可化為:,∴或,∴或.故答案為1或-1.16、80°.【解析】

如圖,已知m∥n,根據平行線的性質可得∠1=∠3,再由平角的定義即可求得∠2的度數.【詳解】如圖,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案為80°.【點睛】本題考查了平行線的性質,熟練運用平行線的性質是解決問題的關鍵.三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+1.(2)當t=2時,點M的坐標為(1,6);當t≠2時,不存在,理由見解析;(1)y=﹣x+1;P點到直線BC的距離的最大值為,此時點P的坐標為(,).【解析】【分析】(1)由點A、B的坐標,利用待定系數法即可求出拋物線的表達式;(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據點C的坐標利用平行四邊形的性質可求出點P、M的坐標;當t≠2時,不存在,利用平行四邊形對角線互相平分結合CE≠PE可得出此時不存在符合題意的點M;(1)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標利用待定系數法可求出直線BC的解析式,根據點P的坐標可得出點F的坐標,進而可得出PF的長度,再由三角形的面積公式即可求出S關于t的函數表達式;②利用二次函數的性質找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標即可得出結論.【詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對稱軸l于點E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,∴拋物線的對稱軸為直線x=1,當t=2時,點C、P關于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,∵拋物線的表達式為y=﹣x2+2x+1,∴點C的坐標為(0,1),點P的坐標為(2,1),∴點M的坐標為(1,6);當t≠2時,不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點C的橫坐標為0,點E的橫坐標為0,∴點P的橫坐標t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過點P作PF∥y軸,交BC于點F.設直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點P的坐標為(t,﹣t2+2t+1),∴點F的坐標為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當t=時,S取最大值,最大值為.∵點B的坐標為(1,0),點C的坐標為(0,1),∴線段BC=,∴P點到直線BC的距離的最大值為,此時點P的坐標為(,).【點睛】本題考查了待定系數法求一次(二次)函數解析式、平行四邊形的判定與性質、三角形的面積、一次(二次)函數圖象上點的坐標特征以及二次函數的性質,解題的關鍵是:(1)由點的坐標,利用待定系數法求出拋物線表達式;(2)分t=2和t≠2兩種情況考慮;(1)①利用三角形的面積公式找出S關于t的函數表達式;②利用二次函數的性質結合面積法求出P點到直線BC的距離的最大值.18、⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】

(1)由頻數直方圖知組距是50,分組數列中依次填寫100.5,150.5;0.5-50.5的頻數=100×0.1=10,由各組的頻率之和等于1可知:100.5-150.5的頻率=1-0.1-0.2-0.3-0.1-0.05=0.25,則頻數=100×0.25=25,由此填表即可;(2)在頻率分布直方圖中,長方形ABCD的面積為50×0.25=12.5,這次調查的樣本容量是100;(3)先求得消費在150元以上的學生的頻率,繼而可求得應對該校1000學生中約多少名學生提出該項建議..【詳解】解:填表如下:(2)長方形ABCD的面積為0.25,樣本容量是100;提出這項建議的人數人.【點睛】本題考查了頻數分布表,樣本估計總體、樣本容量等知識.注意頻數分布表中總的頻率之和是1.19、(1)、(t+6,t);(2)、當t=2時,S有最小值是16;(3)、理由見解析.【解析】

(1)如圖所示,過點E作EG⊥x軸于點G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點E的坐標為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當t=2時,S有最小值是16;(3)①假設∠FBD為直角,則點F在直線BC上,∵PF=OP<AB,∴點F不可能在BC上,即∠FBD不可能為直角;②假設∠FDB為直角,則點D在EF上,∵點D在矩形的對角線PE上,∴點D不可能在EF上,即∠FDB不可能為直角;③假設∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點H,則FH=PA,即4﹣t=6﹣t,方程無解,∴假設不成立,即△BDF不可能是等腰直角三角形.20、(1)8.2;9;9;6.4;(2)贊同甲的說法.理由見解析.【解析】

(1)利用平均數、眾數、中位數的定義和方差的計算公式求解;(2)利用甲的平均數大得到總營業(yè)額高,方差小,營業(yè)額穩(wěn)定進行判斷.【詳解】(1)甲的平均數;乙的眾數為9;丙的中位數為9,丙的方差;故答案為8.2;9;9;6.4;(2)贊同甲的說法.理由是:甲的平均數高,總營業(yè)額比乙、丙都高,每月的營業(yè)額比較穩(wěn)定.【點睛】本題考查了方差:方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小.記住方差的計算公式.也考查了平均數、眾數和中位數.21、(1),;(1)2.【解析】試題分析:(1)先求出A、B、C點坐標,用待定系數法求出直線AB和反比例的函數解析式;(1)聯立一次函數的解析式和反比例的函數解析式可得交點D的坐標,從而根據三角形面積公式求解.試題解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x軸于點E,tan∠ABO==,∴OA=1,CE=3,∴點A的坐標為(0,1)、點B的坐標為C(4,0)、點C的坐標為(﹣1,3),設直線AB的解析式為,則,解得:,故直線AB的解析式為,設反比例函數的解析式為(),將點C的坐標代入,得3=,∴m=﹣3.∴該反比例函數的解析式為;(1)聯立反比例函數的解析式和直線AB的解析式可得,可得交點D的坐標為(3,﹣1),則△BOD的面積=4×1÷1=1,△BOD的面積=4×3÷1=3,故△OCD的面積為1+3=2.考點:反比例函數與一次函數的交點問題.22、(1)見解析(2)見解析(3)9【解析】試題分析:(1)將△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1,如圖所示;(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,如圖所示.試題解析:(1)根據題意畫出圖形,△A1B1C1為所求三角形;(2)根據題意畫出圖形,△A2B2C2為所求三角形.考點:1.作圖-位似變換,2.作圖-平移變換23、(1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.【解析】

(1)將點M坐標代入y=x2+ax+2a+1,求出a的值,進而可得到二次函數表達式;(2)先求出拋物線與x軸的交點,將交點代入一次函數解析式,即可得到k,b滿足的關系;(3)先求出平移后的新拋物線的解析式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論