2023-2024學年河北省秦皇島海港區(qū)四校聯考中考數學模擬試題含解析_第1頁
2023-2024學年河北省秦皇島海港區(qū)四校聯考中考數學模擬試題含解析_第2頁
2023-2024學年河北省秦皇島海港區(qū)四校聯考中考數學模擬試題含解析_第3頁
2023-2024學年河北省秦皇島海港區(qū)四校聯考中考數學模擬試題含解析_第4頁
2023-2024學年河北省秦皇島海港區(qū)四校聯考中考數學模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年河北省秦皇島海港區(qū)四校聯考中考數學模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.+= B.﹣= C.×=6 D.=42.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.723.一、單選題在反比例函數的圖象中,陰影部分的面積不等于4的是()A. B. C. D.4.計算(﹣3)﹣(﹣6)的結果等于()A.3B.﹣3C.9D.185.下列各式:①3+3=6;②=1;③+==2;④=2;其中錯誤的有().A.3個 B.2個 C.1個 D.0個6.若關于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.7.已知二次函數,當自變量取時,其相應的函數值小于0,則下列結論正確的是()A.取時的函數值小于0B.取時的函數值大于0C.取時的函數值等于0D.取時函數值與0的大小關系不確定8.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④9.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網絡上推出,即刻轉發(fā)量就超過810000這個數用科學記數法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×10410.計算1+2+22+23+…+22010的結果是()A.22011–1 B.22011+1C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,正方形ABCD的邊長為6,E,F是對角線BD上的兩個動點,且EF=,連接CE,CF,則△CEF周長的最小值為_____.12.已知三角形兩邊的長分別為1、5,第三邊長為整數,則第三邊的長為_____.13.規(guī)定用符號表示一個實數的整數部分,例如:,.按此規(guī)定,的值為________.14.如圖,是由一些小立方塊所搭幾何體的三種視圖,若在所搭幾何體的基礎上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個大正方體,至少還需要________個小立方塊.15.如圖,以長為18的線段AB為直徑的⊙O交△ABC的邊BC于點D,點E在AC上,直線DE與⊙O相切于點D.已知∠CDE=20°,則的長為_____.16.若關于x的方程的解是正數,則m的取值范圍是____________________17.如圖,點G是的重心,AG的延長線交BC于點D,過點G作交AC于點E,如果,那么線段GE的長為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.(1)求證:△AGE≌△BGF;(2)試判斷四邊形AFBE的形狀,并說明理由.19.(5分)某數學社團成員想利用所學的知識測量某廣告牌的寬度(圖中線段MN的長),直線MN垂直于地面,垂足為點P.在地面A處測得點M的仰角為58°、點N的仰角為45°,在B處測得點M的仰角為31°,AB=5米,且A、B、P三點在一直線上.請根據以上數據求廣告牌的寬MN的長.(參考數據:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)20.(8分)為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)21.(10分)孔明同學對本校學生會組織的“為貧困山區(qū)獻愛心”自愿捐款活動進行抽樣調查,得到了一組學生捐款情況的數據.如圖是根據這組數據繪制的統(tǒng)計圖,圖中從左到右各長方形的高度之比為3:4:5:10:8,又知此次調查中捐款30元的學生一共16人.孔明同學調查的這組學生共有_______人;這組數據的眾數是_____元,中位數是_____元;若該校有2000名學生,都進行了捐款,估計全校學生共捐款多少元?22.(10分)如圖1所示是一輛直臂高空升降車正在進行外墻裝飾作業(yè).圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為2m.當起重臂AC長度為8m,張角∠HAC為118°時,求操作平臺C離地面的高度.(果保留小數點后一位,參考數據:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)23.(12分)如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設太陽光線與水平地面的夾角為α,當α=60°時,測得樓房在地面上的影長AE=10米,現有一老人坐在MN這層臺階上曬太陽.(取1.73)(1)求樓房的高度約為多少米?(2)過了一會兒,當α=45°時,問老人能否還曬到太陽?請說明理由.24.(14分)某網店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.該網店甲、乙兩種羽毛球每筒的售價各是多少元?根據健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據同類二次根式才能合并可對A進行判斷;根據二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據二次根式的除法對D進行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【點睛】此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.2、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.3、B【解析】

根據反比例函數中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經??疾榈囊粋€知識點;這里體現了數形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.4、A【解析】原式=?3+6=3,故選A5、A【解析】3+3=6,錯誤,無法計算;②=1,錯誤;③+==2不能計算;④=2,正確.故選A.6、B【解析】

將k看做已知數求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【點睛】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數的值.7、B【解析】

畫出函數圖象,利用圖象法解決問題即可;【詳解】由題意,函數的圖象為:∵拋物線的對稱軸x=,設拋物線與x軸交于點A、B,∴AB<1,∵x取m時,其相應的函數值小于0,∴觀察圖象可知,x=m-1在點A的左側,x=m-1時,y>0,故選B.【點睛】本題考查二次函數圖象上的點的坐標特征,解題的關鍵是學會利用函數圖象解決問題,體現了數形結合的思想.8、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.9、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】810000=8.1×1.

故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、A【解析】

可設其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點睛】本題考查了因式分解的應用;設出和為S,并求出2S進行做差求解是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2+4【解析】

如圖作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最?。驹斀狻咳鐖D作CH∥BD,使得CH=EF=2,連接AH交BD由F,則△CEF的周長最小.∵CH=EF,CH∥EF,∴四邊形EFHC是平行四邊形,∴EC=FH,∵FA=FC,∴EC+CF=FH+AF=AH,∵四邊形ABCD是正方形,∴AC⊥BD,∵CH∥DB,∴AC⊥CH,∴∠ACH=90°,在Rt△ACH中,AH==4,∴△EFC的周長的最小值=2+4,故答案為:2+4.【點睛】本題考查軸對稱﹣最短問題,正方形的性質、勾股定理、平行四邊形的判定和性質等知識,解題的關鍵是學會利用軸對稱解決最短問題.12、2【解析】分析:根據三角形的三邊關系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據第三邊是整數求解.詳解:根據三角形的三邊關系,得第三邊>4,而<1.又第三條邊長為整數,則第三邊是2.點睛:此題主要是考查了三角形的三邊關系,同時注意整數這一條件.13、4【解析】

根據規(guī)定,取的整數部分即可.【詳解】∵,∴∴整數部分為4.【點睛】本題考查無理數的估值,熟記方法是關鍵.14、54【解析】試題解析:由主視圖可知,搭成的幾何體有三層,且有4列;由左視圖可知,搭成的幾何體共有3行;第一層有7個正方體,第二層有2個正方體,第三層有1個正方體,共有10個正方體,∵搭在這個幾何體的基礎上添加相同大小的小正方體,以搭成一個大正方體,∴搭成的大正方體的共有4×4×4=64個小正方體,∴至少還需要64-10=54個小正方體.【點睛】先由主視圖、左視圖、俯視圖求出原來的幾何體共有10個正方體,再根據搭成的大正方體的共有4×4×4=64個小正方體,即可得出答案.本題考查了學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查,關鍵是求出搭成的大正方體共有多少個小正方體.15、7π【解析】

連接OD,由切線的性質和已知條件可求出∠AOD的度數,再根據弧長公式即可求出的長.【詳解】連接OD,∵直線DE與⊙O相切于點D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的長==7π,故答案為:7π.【點睛】本題考查了切線的性質、等腰三角形的判斷和性質以及弧長公式的運用,求出∠AOD的度數是解題的關鍵.16、m<4且m≠2【解析】解方程得x=4-m,由已知可得x>0且x-2≠0,則有4-m>0且4-m-2≠0,解得:m<4且m≠2.17、2【解析】分析:由點G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可證得△AEG∽△ACD,然后由相似三角形的對應邊成比例,即可求得線段GE的長.詳解:∵點G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案為2.點睛:本題考查了三角形重心的定義和性質、相似三角形的判定和性質.利用三角形重心的性質得出AG:AD=2:3是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)四邊形AFBE是菱形【解析】試題分析:(1)由平行四邊形的性質得出AD∥BC,得出∠AEG=∠BFG,由AAS證明△AGE≌△BGF即可;(2)由全等三角形的性質得出AE=BF,由AD∥BC,證出四邊形AFBE是平行四邊形,再根據EF⊥AB,即可得出結論.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四邊形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四邊形AFBE是平行四邊形,又∵EF⊥AB,∴四邊形AFBE是菱形.考點:平行四邊形的性質;全等三角形的判定與性質;線段垂直平分線的性質;探究型.19、1.8米【解析】

設PA=PN=x,Rt△APM中求得=1.6x,在Rt△BPM中,解得x=3,MN=MP-NP=0.6x=1.8.【詳解】在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,,設PA=PN=x,∵∠MAP=58°,∴=1.6x,在Rt△BPM中,,∵∠MBP=31°,AB=5,∴,∴x=3,∴MN=MP-NP=0.6x=1.8(米),答:廣告牌的寬MN的長為1.8米.【點睛】熟練掌握三角函數的定義并能夠靈活運用是解題的關鍵.20、水壩原來的高度為12米【解析】試題分析:設BC=x米,用x表示出AB的長,利用坡度的定義得到BD=BE,進而列出x的方程,求出x的值即可.試題解析:設BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水壩原來的高度為12米..考點:解直角三角形的應用,坡度.21、(1)60;(2)20,20;(3)38000【解析】

(1)利用從左到右各長方形高度之比為3:4:5:10:8,可設捐5元、10元、15元、20元和30元的人數分別為3x、4x、5x、10x、8x,則根據題意得8x=1,解得x=2,然后計算3x+4x+5x++10x+8x即可;(2)先確定各組的人數,然后根據中位數和眾數的定義求解;(3)先計算出樣本的加權平均數,然后利用樣本平均數估計總體,用2000乘以樣本平均數即可.【詳解】(1)設捐5元、10元、15元、20元和30元的人數分別為3x、4x、5x、10x、8x,則8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人數分別為6,8,10,20,1.∵20出現次數最多,∴眾數為20元;∵共有60個數據,第30個和第31個數據落在第四組內,∴中位數為20元;(3)2000=38000(元),∴估算全校學生共捐款38000元.【點睛】本題考查了條形統(tǒng)計圖:條形統(tǒng)計圖是用線段長度表示數據,根據數量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.也考查了樣本估計總體、中位數與眾數.22、5.8【解析】

過點作于點,過點作于點,易得四邊形為矩形,則,再計算出,在中,利用正弦可計算出CF的長度,然后計算CF+EF即可.【詳解】解:如圖,過點作于點,過點作于點,.又,.∴四邊形為矩形.在中,,..答:操作平臺離地面的高度約為.【點睛】本題考查了解直角三角形的應用,先將實際問題抽象為數學問題,然后利用勾股定理和銳角三角函數的定義進行計算.23、(1)樓房的高度約為17.3米;(2)當α=45°時,老人仍可以曬到太陽.理由見解析.【解析】試題分析:(1)在Rt△ABE中,根據的正切值即可求得樓高;(2)當時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.可求得AF=AB=17.3米,又因CF=CH=17.3-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論