江西省樟樹第二中學(xué)2023-2024學(xué)年中考數(shù)學(xué)猜題卷含解析_第1頁
江西省樟樹第二中學(xué)2023-2024學(xué)年中考數(shù)學(xué)猜題卷含解析_第2頁
江西省樟樹第二中學(xué)2023-2024學(xué)年中考數(shù)學(xué)猜題卷含解析_第3頁
江西省樟樹第二中學(xué)2023-2024學(xué)年中考數(shù)學(xué)猜題卷含解析_第4頁
江西省樟樹第二中學(xué)2023-2024學(xué)年中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省樟樹第二中學(xué)2023-2024學(xué)年中考數(shù)學(xué)猜題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列各組單項式中,不是同類項的一組是()A.和 B.和 C.和 D.和32.如圖所示,在方格紙上建立的平面直角坐標系中,將△ABC繞點O按順時針方向旋轉(zhuǎn)90°,得到△A′B′O,則點A′的坐標為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)3.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°4.如圖,△ABC中,DE∥BC,,AE=2cm,則AC的長是()A.2cm B.4cm C.6cm D.8cm5.如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y=2x上,第二象限的點B在反比例函數(shù)y=kxA.﹣22 B.4 C.﹣4 D.226.如圖,在正方形OABC中,點A的坐標是(﹣3,1),點B的縱坐標是4,則B,C兩點的坐標分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)7.當ab>0時,y=ax2與y=ax+b的圖象大致是()A. B. C. D.8.四個有理數(shù)﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣39.已知:如圖,在扇形中,,半徑,將扇形沿過點的直線折疊,點恰好落在弧上的點處,折痕交于點,則弧的長為()A. B. C. D.10.一個多邊形的邊數(shù)由原來的3增加到n時(n>3,且n為正整數(shù)),它的外角和()A.增加(n﹣2)×180° B.減?。╪﹣2)×180°C.增加(n﹣1)×180° D.沒有改變11.鐘鼎文是我國古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對稱圖形的是()A. B. C. D.12.如圖,PA、PB切⊙O于A、B兩點,AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知x+y=,xy=,則x2y+xy2的值為____.14.在一次摸球?qū)嶒炛校蛳鋬?nèi)放有白色、黃色乒乓球共50個,這兩種乒乓球的大小、材質(zhì)都相同.小明發(fā)現(xiàn),摸到白色乒乓球的頻率穩(wěn)定在60%左右,則箱內(nèi)黃色乒乓球的個數(shù)很可能是________.15.已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,則這組數(shù)據(jù)的中位數(shù)為_____.16.在平面直角坐標系中,智多星做走棋的游戲,其走法是:棋子從原點出發(fā),第1步向上走1個單位,第2步向上走2個單位,第3步向右走1個單位,第4步向上走1個單位……依此類推,第n步的走法是:當n被3除,余數(shù)為2時,則向上走2個單位;當走完第2018步時,棋子所處位置的坐標是_____17.中,,,高,則的周長為______。18.不等式組的解集是__.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)閱讀材料:對于線段的垂直平分線我們有如下結(jié)論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據(jù)閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結(jié)AE、BE,△ABE經(jīng)順時針旋轉(zhuǎn)后與△BCF重合.(I)旋轉(zhuǎn)中心是點,旋轉(zhuǎn)了(度);(II)當點E從點D向點C移動時,連結(jié)AF,設(shè)AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數(shù);若改變,請說出變化情況.20.(6分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.數(shù)學(xué)課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)21.(6分)關(guān)于x的一元二次方程x2+2x+2m=0有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22﹣x1x2=8,求m的值.22.(8分)如圖,在正方形中,點是對角線上一個動點(不與點重合),連接過點作,交直線于點.作交直線于點,連接.(1)由題意易知,,觀察圖,請猜想另外兩組全等的三角形;;(2)求證:四邊形是平行四邊形;(3)已知,的面積是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由.23.(8分)為看豐富學(xué)生課余文化生活,某中學(xué)組織學(xué)生進行才藝比賽,每人只能從以下五個項目中選報一項:.書法比賽,.繪畫比賽,.樂器比賽,.象棋比賽,.圍棋比賽根據(jù)學(xué)生報名的統(tǒng)計結(jié)果,繪制了如下尚不完整的統(tǒng)計圖:圖1各項報名人數(shù)扇形統(tǒng)計圖:圖2各項報名人數(shù)條形統(tǒng)計圖:根據(jù)以上信息解答下列問題:(1)學(xué)生報名總?cè)藬?shù)為人;(2)如圖1項目D所在扇形的圓心角等于;(3)請將圖2的條形統(tǒng)計圖補充完整;(4)學(xué)校準備從書法比賽一等獎獲得者甲、乙、丙、丁四名同學(xué)中任意選取兩名同學(xué)去參加全市的書法比賽,求恰好選中甲、乙兩名同學(xué)的概率.24.(10分)某校初三進行了第三次模擬考試,該校領(lǐng)導(dǎo)為了了解學(xué)生的數(shù)學(xué)考試情況,抽樣調(diào)查了部分學(xué)生的數(shù)學(xué)成績,并將抽樣的數(shù)據(jù)進行了如下整理.(1)填空_______,_______,數(shù)學(xué)成績的中位數(shù)所在的等級_________.(2)如果該校有1200名學(xué)生參加了本次模擬測,估計等級的人數(shù);(3)已知抽樣調(diào)查學(xué)生的數(shù)學(xué)成績平均分為102分,求A級學(xué)生的數(shù)學(xué)成績的平均分數(shù).①如下分數(shù)段整理樣本等級等級分數(shù)段各組總分人數(shù)48435741712②根據(jù)上表繪制扇形統(tǒng)計圖25.(10分)如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.(1)求證:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半徑.26.(12分)先化簡,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣27.(12分)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

如果兩個單項式,它們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么就稱這兩個單項式為同類項.【詳解】根據(jù)題意可知:x2y和2xy2不是同類項.故答案選:A.【點睛】本題考查了單項式與多項式,解題的關(guān)鍵是熟練的掌握單項式與多項式的相關(guān)知識點.2、D【解析】

解決本題抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標為(-3,1),根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,畫圖,從而得A′點坐標為(1,3).故選D.3、A【解析】

根據(jù)∠ABD=35°就可以求出的度數(shù),再根據(jù),可以求出,因此就可以求得的度數(shù),從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數(shù)都是70°,∵BD為直徑,∴的度數(shù)是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數(shù)也是110°,∴的度數(shù)是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【點睛】本題考查了等腰三角形性質(zhì)、圓周角定理,主要考查學(xué)生的推理能力.4、C【解析】

由∥可得△ADE∽△ABC,再根據(jù)相似三角形的性質(zhì)即可求得結(jié)果.【詳解】∵∥∴△ADE∽△ABC∴∵∴AC=6cm故選C.考點:相似三角形的判定和性質(zhì)點評:解答本題的關(guān)鍵是熟練掌握相似三角形的對應(yīng)邊成比例,注意對應(yīng)字母在對應(yīng)位置上.5、C【解析】試題分析:作AC⊥x軸于點C,作BD⊥x軸于點D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點:1.相似三角形的判定與性質(zhì);2.反比例函數(shù)圖象上點的坐標特征.6、A【解析】

作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點A的坐標是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點A的坐標是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標與圖形性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.7、D【解析】

∵ab>0,∴a、b同號.當a>0,b>0時,拋物線開口向上,頂點在原點,一次函數(shù)過一、二、三象限,沒有圖象符合要求;當a<0,b<0時,拋物線開口向下,頂點在原點,一次函數(shù)過二、三、四象限,B圖象符合要求.故選B.8、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故選D.9、D【解析】

如圖,連接OD.根據(jù)折疊的性質(zhì)、圓的性質(zhì)推知△ODB是等邊三角形,則易求∠AOD=110°-∠DOB=50°;然后由弧長公式弧長的公式來求的長【詳解】解:如圖,連接OD.解:如圖,連接OD.

根據(jù)折疊的性質(zhì)知,OB=DB.

又∵OD=OB,

∴OD=OB=DB,即△ODB是等邊三角形,

∴∠DOB=60°.

∵∠AOB=110°,

∴∠AOD=∠AOB-∠DOB=50°,

∴的長為=5π.

故選D.【點睛】本題考查了弧長的計算,翻折變換(折疊問題).折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.所以由折疊的性質(zhì)推知△ODB是等邊三角形是解答此題的關(guān)鍵之處.10、D【解析】

根據(jù)多邊形的外角和等于360°,與邊數(shù)無關(guān)即可解答.【詳解】∵多邊形的外角和等于360°,與邊數(shù)無關(guān),∴一個多邊形的邊數(shù)由3增加到n時,其外角度數(shù)的和還是360°,保持不變.故選D.【點睛】本題考查了多邊形的外角和,熟知多邊形的外角和等于360°是解題的關(guān)鍵.11、A【解析】根據(jù)軸對稱圖形的概念求解.解:根據(jù)軸對稱圖形的概念可知:B,C,D是軸對稱圖形,A不是軸對稱圖形,故選A.“點睛”本題考查了軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.12、C【解析】

連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因為是圓的直徑,所以,根據(jù)三角形內(nèi)角和即可求出的度數(shù)?!驹斀狻窟B接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點睛】本題主要考察切線的性質(zhì),四邊形和三角形的內(nèi)角和以及圓周角定理。二、填空題:(本大題共6個小題,每小題4分,共24分.)13、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個式子看做一個整體,利用上述方法因式分解的能力.14、20【解析】

先設(shè)出白球的個數(shù),根據(jù)白球的頻率求出白球的個數(shù),再用總的個數(shù)減去白球的個數(shù)即可.【詳解】設(shè)黃球的個數(shù)為x個,∵共有黃色、白色的乒乓球50個,黃球的頻率穩(wěn)定在60%,∴=60%,解得x=30,∴布袋中白色球的個數(shù)很可能是50-30=20(個).故答案為:20.【點睛】本題考查了利用頻率估計概率,熟練掌握該知識點是本題解題的關(guān)鍵.15、2【解析】

解:這組數(shù)據(jù)的平均數(shù)為2,

有(2+2+0-2+x+2)=2,

可求得x=2.

將這組數(shù)據(jù)從小到大重新排列后,觀察數(shù)據(jù)可知最中間的兩個數(shù)是2與2,

其平均數(shù)即中位數(shù)是(2+2)÷2=2.

故答案是:2.16、(672,2019)【解析】分析:按照題目給定的規(guī)則,找到周期,由題意可得每三步是一個循環(huán),所以只需要計算2018被3除,就可以得到棋子的位置.詳解:解:由題意得,每3步為一個循環(huán)組依次循環(huán),且一個循環(huán)組內(nèi)向右1個單位,向上3個單位,∵2018÷3=672…2,∴走完第2018步,為第673個循環(huán)組的第2步,所處位置的橫坐標為672,縱坐標為672×3+3=2019,∴棋子所處位置的坐標是(672,2019).故答案為:(672,2019).點睛:周期問題解決問題的核心是要找到最小正周期,然后把給定的數(shù)(一般是一個很大的數(shù))除以最小正周期,余數(shù)是幾,就是第幾步,特別余數(shù)是1,就是第一步,余數(shù)是0,就是最后一步.17、32或42【解析】

根據(jù)題意,分兩種情況討論:①若∠ACB是銳角,②若∠ACB是鈍角,分別畫出圖形,利用勾股定理,即可求解.【詳解】分兩種情況討論:①若∠ACB是銳角,如圖1,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9+5+15+13=42,②若∠ACB是鈍角,如圖2,∵,,高,∴在Rt?ABD中,,即:,同理:,∴的周長=9-5+15+13=32,故答案是:32或42.【點睛】本題主要考查勾股定理,根據(jù)題意,畫出圖形,分類進行計算,是解題的關(guān)鍵.18、2≤x<1【解析】

分別解兩個不等式得到x<1和x≥2,然后根據(jù)大小小大中間找確定不等數(shù)組的解集.【詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【點睛】本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、B60【解析】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出結(jié)論;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BF=CF,則點F在線段BC的垂直平分線上,又由AC=AB,可得點A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進而得出∠APC的度數(shù).詳解:(1)B,60;(2)補全圖形如圖所示;的大小保持不變,理由如下:設(shè)與交于點∵直線是等邊的對稱軸∴,∵經(jīng)順時針旋轉(zhuǎn)后與重合∴,∴∴點在線段的垂直平分線上∵∴點在線段的垂直平分線上∴垂直平分,即∴點睛:本題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是熟記旋轉(zhuǎn)的性質(zhì)及垂直平分線的性質(zhì),注意只證明一點是不能說明這條直線是垂直平分線的.20、觀景亭D到南濱河路AC的距離約為248米.【解析】

過點D作DE⊥AC,垂足為E,設(shè)BE=x,根據(jù)AE=DE,列出方程即可解決問題.【詳解】過點D作DE⊥AC,垂足為E,設(shè)BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴觀景亭D到南濱河路AC的距離約為248米.21、(1);(2)m=﹣.【解析】

(1)根據(jù)已知和根的判別式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;(2)根據(jù)根與系數(shù)的關(guān)系得出x1+x2=﹣2,x1?x2=2m,把x1+xx12+x22﹣x1x2=8變形為(x1+x2)2﹣3x1x2=8,代入求出即可.【詳解】(1)∵關(guān)于x的一元二次方程x2+2x+2m=0有兩個不相等的實數(shù)根,∴△=22﹣4×1×2m=4﹣8m>0,解得:即m的取值范圍是(2)∵x1,x2是一元二次方程x2+2x+2m=0的兩個根,∴x1+x2=﹣2,x1?x2=2m,∵x12+x22﹣x1x2=8,∴(x1+x2)2﹣3x1x2=8,∴(﹣2)2﹣3×2m=8,解得:【點睛】本題考查了根的判別式和根與系數(shù)的關(guān)系,能熟記根的判別式的內(nèi)容和根與系數(shù)的關(guān)系的內(nèi)容是解此題的關(guān)鍵.22、(1);(2)見解析;(3)存在,2【解析】

(1)利用正方形的性質(zhì)及全等三角形的判定方法證明全等即可;(2)由(1)可知,則有,從而得到,最后利用一組對邊平行且相等即可證明;(3)由(1)可知,則,從而得到是等腰直角三角形,則當最短時,的面積最小,再根據(jù)AB的值求出PB的最小值即可得出答案.【詳解】解:(1)四邊形是正方形,,,,,,在和中,在和中,,故答案為;(2)證明:由(1)可知,,四邊形是平行四邊形.(3)解:存在,理由如下:是等腰直角三角形,最短時,的面積最小,當時,最短,此時,的面積最小為.【點睛】本題主要考查全等三角形的判定及性質(zhì),平行四邊形的判定,掌握全等三角形的判定方法和平行四邊形的判定方法是解題的關(guān)鍵.23、(1)200;(2)54°;(3)見解析;(4)【解析】

(1)根據(jù)A的人數(shù)及所占的百分比即可求出總?cè)藬?shù);(2)用D的人數(shù)除以總?cè)藬?shù)再乘360°即可得出答案;(3)用總?cè)藬?shù)減去A,B,D,E的人數(shù)即為C對應(yīng)的人數(shù),然后即可把條形統(tǒng)計圖補充完整;(4)用樹狀圖列出所有的情況,找出恰好選中甲、乙兩名同學(xué)的情況數(shù),利用概率公式求解即可.【詳解】解:(1)學(xué)生報名總?cè)藬?shù)為(人),故答案為:200;(2)項目所在扇形的圓心角等于,故答案為:54°;(3)項目的人數(shù)為,補全圖形如下:(4)畫樹狀圖得:所有出現(xiàn)的等可能性結(jié)果共有12種,其中滿足條件的結(jié)果有2種.恰好選中甲、乙兩名同學(xué)的概率為.【點睛】本題主要考查扇形統(tǒng)計圖與條形統(tǒng)計圖的結(jié)合,能夠從圖表中獲取有用信息,掌握概率公式是解題的關(guān)鍵.24、(1)6;8;B;(2)120人;(3)113分.【解析】

(1)根據(jù)表格中的數(shù)據(jù)和扇形統(tǒng)計圖中的數(shù)據(jù)可以求得本次抽查的人數(shù),從而可以得到m、n的值,從而可以得到數(shù)學(xué)成績的中位數(shù)所在的等級;

(2)根據(jù)表格中的數(shù)據(jù)可以求得D等級的人數(shù);

(3)根據(jù)表格中的數(shù)據(jù),可以計算出A等級學(xué)生的數(shù)學(xué)成績的平均分數(shù).【詳解】(1)本次抽查的學(xué)生有:(人),

數(shù)學(xué)成績的中位數(shù)所在的等級B,

故答案為:6,11,B;

(2)120(人),

答:D等級的約有120人;

(3)由表可得,

A等級學(xué)生的數(shù)學(xué)成績的平均分數(shù):(分),

即A等級學(xué)生的數(shù)學(xué)成績的平均分是113分.【點睛】本題考查了扇形統(tǒng)計圖、中位數(shù)、加權(quán)平均數(shù),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.25、(1)見解析;(2)【解析】分析:(1)首先連接CO,根據(jù)CD與⊙O相切于點C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先設(shè)CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得:ACCB=CDBD,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.詳解:(1)證明:如圖,連接CO,,∵CD與⊙O相切于點C,∴∠OCD=90°,∵AB是圓O的直徑,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:設(shè)CD為x,則AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半徑是.點睛:此題主要考查了切線的性質(zhì)和應(yīng)用,以及勾股定理的應(yīng)用,要熟練掌握.26、【解析】

原式去括號合并得到最簡結(jié)果,把a與b的值代入計算即可求出值;【詳解】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,當a=1、b=﹣時,原式=12+(﹣)2=1+=.【點睛】考查了整式的加減-化簡求值,以及非負數(shù)的性質(zhì),熟練掌握運算法則是解本題的關(guān)鍵.27、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AECP的面積的最大值是,點P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論