2023-2024學(xué)年深圳市外國(guó)語(yǔ)校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁(yè)
2023-2024學(xué)年深圳市外國(guó)語(yǔ)校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁(yè)
2023-2024學(xué)年深圳市外國(guó)語(yǔ)校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁(yè)
2023-2024學(xué)年深圳市外國(guó)語(yǔ)校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁(yè)
2023-2024學(xué)年深圳市外國(guó)語(yǔ)校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年深圳市外國(guó)語(yǔ)校初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列天氣預(yù)報(bào)中的圖標(biāo),其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.2.下列計(jì)算正確的是()A.a(chǎn)+a=2a B.b3?b3=2b3 C.a(chǎn)3÷a=a3 D.(a5)2=a73.如圖,數(shù)軸A、B上兩點(diǎn)分別對(duì)應(yīng)實(shí)數(shù)a、b,則下列結(jié)論正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.1a+4.關(guān)于x的一元二次方程x2+2x+k+1=0的兩個(gè)實(shí)根x1,x2,滿足x1+x2﹣x1x2<﹣1,則k的取值范圍在數(shù)軸上表示為()A. B.C. D.5.如圖,△A′B′C′是△ABC以點(diǎn)O為位似中心經(jīng)過(guò)位似變換得到的,若△A′B′C′的面積與△ABC的面積比是4:9,則OB′:OB為()A.2:3 B.3:2 C.4:5 D.4:96.如果m的倒數(shù)是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20187.如圖,PA和PB是⊙O的切線,點(diǎn)A和B是切點(diǎn),AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°8.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動(dòng)點(diǎn)(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯(cuò)誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形9.下列圖形中,可以看作中心對(duì)稱圖形的是()A. B. C. D.10.如圖是一個(gè)由5個(gè)相同的正方體組成的立體圖形,它的主視圖是()A. B.C. D.11.若一個(gè)凸多邊形的內(nèi)角和為720°,則這個(gè)多邊形的邊數(shù)為A.4 B.5 C.6 D.712.如圖所示的幾何體的主視圖正確的是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,△ABC中,AB=5,AC=6,將△ABC翻折,使得點(diǎn)A落到邊BC上的點(diǎn)A′處,折痕分別交邊AB、AC于點(diǎn)E,點(diǎn)F,如果A′F∥AB,那么BE=_____.14.如圖,已知AB∥CD,=____________15.如圖,在△ABC中,BC=7,,tanC=1,點(diǎn)P為AB邊上一動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B重合),以點(diǎn)P為圓心,PB為半徑畫(huà)圓,如果點(diǎn)C在圓外,那么PB的取值范圍______.16.三角形兩邊的長(zhǎng)是3和4,第三邊的長(zhǎng)是方程x2﹣14x+48=0的根,則該三角形的周長(zhǎng)為_(kāi)____.17.計(jì)算:(1)()2=_____;(2)=_____.18.有三個(gè)大小一樣的正六邊形,可按下列方式進(jìn)行拼接:方式1:如圖1;方式2:如圖2;若有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長(zhǎng)是_______.有個(gè)邊長(zhǎng)均為1的正六邊形,采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長(zhǎng)為18,則的最大值為_(kāi)_________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連接CF.(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.20.(6分)問(wèn)題提出(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;問(wèn)題探究(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動(dòng)點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;問(wèn)題解決(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長(zhǎng)是否存在最小值,若存在,求最小值:若不存在,請(qǐng)說(shuō)明理由.21.(6分)計(jì)算:.22.(8分)如圖,在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過(guò)點(diǎn),AB⊥x軸于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,CD⊥x軸于點(diǎn)D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經(jīng)過(guò)點(diǎn)C,且與x軸,y軸的交點(diǎn)分別為點(diǎn)E,F(xiàn),當(dāng)時(shí),求點(diǎn)F的坐標(biāo).23.(8分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數(shù)軸上.24.(10分)在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(8,0)、點(diǎn)B(0,4),點(diǎn)C、D分別是邊OA、AB的中點(diǎn).將△ACD繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.(I)如圖①,連接BD′,當(dāng)BD′∥OA時(shí),求點(diǎn)D′的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),求點(diǎn)C′的坐標(biāo);(III)當(dāng)點(diǎn)B,D′,C′共線時(shí),求點(diǎn)C′的坐標(biāo)(直接寫(xiě)出結(jié)果即可).25.(10分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過(guò)O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交BE于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點(diǎn)M在對(duì)稱軸右側(cè)的拋物線上,點(diǎn)N在x軸上,請(qǐng)問(wèn)是否存在以點(diǎn)A,F(xiàn),M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.26.(12分)已知直線y=mx+n(m≠0,且m,n為常數(shù))與雙曲線y=(k<0)在第一象限交于A,B兩點(diǎn),C,D是該雙曲線另一支上兩點(diǎn),且A、B、C、D四點(diǎn)按順時(shí)針順序排列.(1)如圖,若m=﹣,n=,點(diǎn)B的縱坐標(biāo)為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡(jiǎn)述作法;(2)若四邊形ABCD為矩形,A的坐標(biāo)為(1,5),①求m,n的值;②點(diǎn)P(a,b)是雙曲線y=第一象限上一動(dòng)點(diǎn),當(dāng)S△APC≥24時(shí),則a的取值范圍是.27.(12分)(2017四川省內(nèi)江市)小明隨機(jī)調(diào)查了若干市民租用共享單車的騎車時(shí)間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據(jù)圖中信息,解答下列問(wèn)題:(1)這項(xiàng)被調(diào)查的總?cè)藬?shù)是多少人?(2)試求表示A組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;(3)如果小明想從D組的甲、乙、丙、丁四人中隨機(jī)選擇兩人了解平時(shí)租用共享單車情況,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選中甲的概率.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】

根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,符合題意;B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,不合題意;C、不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,不合題意;D、不是軸對(duì)稱圖形,不是中心對(duì)稱圖形,不合題意.故選:A.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念,軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.2、A【解析】

根據(jù)合并同類項(xiàng)法則;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】A.a+a=2a,故本選項(xiàng)正確;B.,故本選項(xiàng)錯(cuò)誤;C.,故本選項(xiàng)錯(cuò)誤;D.,故本選項(xiàng)錯(cuò)誤.故選:A.【點(diǎn)睛】考查同底數(shù)冪的除法,合并同類項(xiàng),同底數(shù)冪的乘法,冪的乘方與積的乘方,比較基礎(chǔ),掌握運(yùn)算法則是解題的關(guān)鍵.3、C【解析】

本題要先觀察a,b在數(shù)軸上的位置,得b<-1<0<a<1,然后對(duì)四個(gè)選項(xiàng)逐一分析.【詳解】A、因?yàn)閎<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項(xiàng)A錯(cuò)誤;B、因?yàn)閎<0<a,所以ab<0,故選項(xiàng)B錯(cuò)誤;C、因?yàn)閎<-1<0<a<1,所以1a+1D、因?yàn)閎<-1<0<a<1,所以1a-1故選C.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸的對(duì)應(yīng)關(guān)系,數(shù)軸上右邊的數(shù)總是大于左邊的數(shù).4、D【解析】試題分析:根據(jù)根的判別式和根與系數(shù)的關(guān)系列出不等式,求出解集.解:∵關(guān)于x的一元二次方程x2+2x+k+1=0有兩個(gè)實(shí)根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數(shù)軸上表示為:,故選D.點(diǎn)評(píng):本題考查了根的判別式、根與系數(shù)的關(guān)系,在數(shù)軸上找到公共部分是解題的關(guān)鍵.5、A【解析】

根據(jù)位似的性質(zhì)得△ABC∽△A′B′C′,再根據(jù)相似三角形的性質(zhì)進(jìn)行求解即可得.【詳解】由位似變換的性質(zhì)可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'與△ABC的面積的比4:9,∴△A'B'C'與△ABC的相似比為2:3,∴,故選A.【點(diǎn)睛】本題考查了位似變換:如果兩個(gè)圖形不僅是相似圖形,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心.6、A【解析】

因?yàn)閮蓚€(gè)數(shù)相乘之積為1,則這兩個(gè)數(shù)互為倒數(shù),如果m的倒數(shù)是﹣1,則m=-1,然后再代入m2018計(jì)算即可.【詳解】因?yàn)閙的倒數(shù)是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.【點(diǎn)睛】本題主要考查倒數(shù)的概念和乘方運(yùn)算,解決本題的關(guān)鍵是要熟練掌握倒數(shù)的概念和乘方運(yùn)算法則.7、C【解析】試題分析:連接OB,根據(jù)PA、PB為切線可得:∠OAP=∠OBP=90°,根據(jù)四邊形AOBP的內(nèi)角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據(jù)∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點(diǎn):切線的性質(zhì)、三角形外角的性質(zhì)、圓的基本性質(zhì).8、D【解析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯(cuò)誤.

故選D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題.9、B【解析】

根據(jù)中心對(duì)稱圖形的概念求解.【詳解】解:A、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

B、是中心對(duì)稱圖形,故此選項(xiàng)正確;

C、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;

D、不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤.

故選:B.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形的概念,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.10、A【解析】

畫(huà)出從正面看到的圖形即可得到它的主視圖.【詳解】這個(gè)幾何體的主視圖為:故選:A.【點(diǎn)睛】本題考查了簡(jiǎn)單組合體的三視圖:畫(huà)簡(jiǎn)單組合體的三視圖要循序漸進(jìn),通過(guò)仔細(xì)觀察和想象,再畫(huà)它的三視圖.11、C【解析】

設(shè)這個(gè)多邊形的邊數(shù)為n,根據(jù)多邊形的內(nèi)角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設(shè)這個(gè)多邊形的邊數(shù)為n,由多邊形的內(nèi)角和是720°,根據(jù)多邊形的內(nèi)角和定理得(n-2)180°=720°.解得n=6.故選C.【點(diǎn)睛】本題主要考查多邊形的內(nèi)角和定理,熟練掌握多邊形的內(nèi)角和定理是解答本題的關(guān)鍵.12、D【解析】

主視圖是從前向后看,即可得圖像.【詳解】主視圖是一個(gè)矩形和一個(gè)三角形構(gòu)成.故選D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解析】

設(shè)BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依據(jù)△A'CF∽△BCA,可得,即=,進(jìn)而得到BE=.【詳解】解:如圖,由折疊可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折疊可得,AF=A'F,設(shè)BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案為:.【點(diǎn)睛】本題主要考查了折疊問(wèn)題以及相似三角形的判定與性質(zhì)的運(yùn)用,折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.14、85°.【解析】如圖,過(guò)F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°?∠ABF+∠C=180°?120°+25°=85°故答案為85°.15、【解析】分析:根據(jù)題意作出合適的輔助線,然后根據(jù)題意即可求得PB的取值范圍.詳解:作AD⊥BC于點(diǎn)D,作PE⊥BC于點(diǎn)E.∵在△ABC中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由題意可得,當(dāng)PB=PC時(shí),點(diǎn)C恰好在以點(diǎn)P為圓心,PB為半徑圓上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案為0<PB<.點(diǎn)睛:本題考查了點(diǎn)與圓的位置關(guān)系、解直角三角形,解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.16、13【解析】

利用因式分解法求出解已知方程的解確定出第三邊,即可求出該三角形的周長(zhǎng).【詳解】方程x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,當(dāng)x=6時(shí),三角形周長(zhǎng)為3+4+6=13,當(dāng)x=8時(shí),3+4<8不能構(gòu)成三角形,舍去,綜上,該三角形的周長(zhǎng)為13,故答案為13【點(diǎn)睛】此題考查了解一元二次方程-因式分解法,以及三角形三邊關(guān)系,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.17、【解析】

(1)直接利用分式乘方運(yùn)算法則計(jì)算得出答案;(2)直接利用分式除法運(yùn)算法則計(jì)算得出答案.【詳解】(1)()2=;故答案為;(2)==.故答案為.【點(diǎn)睛】此題主要考查了分式的乘除法運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.18、181【解析】

有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,利用4n+2的規(guī)律計(jì)算;把六個(gè)正六邊形圍著一個(gè)正六邊按照方式2進(jìn)行拼接可使周長(zhǎng)為8,六邊形的個(gè)數(shù)最多.【詳解】解:有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長(zhǎng)為4×4+2=18;按下圖拼接,圖案的外輪廓的周長(zhǎng)為18,此時(shí)正六邊形的個(gè)數(shù)最多,即n的最大值為1.故答案為:18;1.【點(diǎn)睛】本題考查了正多邊形和圓,以及圖形的變化類規(guī)律總結(jié)問(wèn)題,根據(jù)題意,得出規(guī)律是解決此題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】

(1)從所給的條件可知,DE是△ABC中位線,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四邊形BCFE是平行四邊形,又因?yàn)锽E=FE,所以四邊形BCFE是菱形.(2)因?yàn)椤螧CF=120°,所以∠EBC=60°,所以菱形的邊長(zhǎng)也為4,求出菱形的高面積就可.【詳解】解:(1)證明:∵D、E分別是AB、AC的中點(diǎn),∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四邊形BCFE是平行四邊形.又∵BE=FE,∴四邊形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等邊三角形.∴菱形的邊長(zhǎng)為4,高為.∴菱形的面積為4×=.20、(1)△ABC的外接圓的R為1;(2)EF的最小值為2;(3)存在,AC的最小值為9.【解析】

(1)如圖1中,作△ABC的外接圓,連接OA,OC.證明∠AOC=90°即可解決問(wèn)題;(2)如圖2中,作AH⊥BC于H.當(dāng)直徑AD的值一定時(shí),EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時(shí),AD的值最短,此時(shí)EF的值也最短;(3)如圖3中,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長(zhǎng)線于H,設(shè)BE=CD=x.證明EC=AC,構(gòu)建二次函數(shù)求出EC的最小值即可解決問(wèn)題.【詳解】解:(1)如圖1中,作△ABC的外接圓,連接OA,OC.∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,又∵∠AOC=2∠B,∴∠AOC=90°,∴AC=1,∴OA=OC=1,∴△ABC的外接圓的R為1.(2)如圖2中,作AH⊥BC于H.∵AC=8,∠C=45°,∴AH=AC?sin45°=8×=8,∵∠BAC=10°,∴當(dāng)直徑AD的值一定時(shí),EF的值也確定,根據(jù)垂線段最短可知當(dāng)AD與AH重合時(shí),AD的值最短,此時(shí)EF的值也最短,如圖2﹣1中,當(dāng)AD⊥BC時(shí),作OH⊥EF于H,連接OE,OF.∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,∴EH=HF,∠OEF=∠OFE=30°,∴EH=OF?cos30°=4?=1,∴EF=2EH=2,∴EF的最小值為2.(3)如圖3中,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABE,連接EC,作EH⊥CB交CB的延長(zhǎng)線于H,設(shè)BE=CD=x.∵∠AE=AC,∠CAE=90°,∴EC=AC,∠AEC=∠ACE=45°,∴EC的值最小時(shí),AC的值最小,∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,∴∠∠BEC+∠BCE=10°,∴∠EBC=20°,∴∠EBH=10°,∴∠BEH=30°,∴BH=x,EH=x,∵CD+BC=2,CD=x,∴BC=2﹣x∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,∵a=1>0,∴當(dāng)x=﹣=1時(shí),EC的長(zhǎng)最小,此時(shí)EC=18,∴AC=EC=9,∴AC的最小值為9.【點(diǎn)睛】本題屬于圓綜合題,考查了圓周角定理,勾股定理,解直角三角形,二次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,學(xué)會(huì)構(gòu)建二次函數(shù)解決最值問(wèn)題,屬于中考?jí)狠S題.21、.【解析】

利用特殊角的三角函數(shù)值以及負(fù)指數(shù)冪的性質(zhì)和絕對(duì)值的性質(zhì)化簡(jiǎn)即可得出答案.【詳解】解:原式==.故答案為.【點(diǎn)睛】本題考查實(shí)數(shù)運(yùn)算,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)冪,正確化簡(jiǎn)各數(shù)是解題關(guān)鍵.22、(1)m=8,n=-2;(2)點(diǎn)F的坐標(biāo)為,【解析】分析:(1)利用三角形的面積公式構(gòu)建方程求出n,再利用待定系數(shù)法求出m的的值即可;(2)分兩種情形分別求解如①圖,當(dāng)k<0時(shí),設(shè)直線y=kx+b與x軸,y軸的交點(diǎn)分別為,.②圖中,當(dāng)k>0時(shí),設(shè)直線y=kx+b與x軸,y軸的交點(diǎn)分別為點(diǎn),.詳解:(1)如圖②∵點(diǎn)A的坐標(biāo)為,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,∴點(diǎn)C的坐標(biāo)為.∵AB⊥x軸于點(diǎn)B,CD⊥x軸于點(diǎn)D,∴B,D兩點(diǎn)的坐標(biāo)分別為,.∵△ABD的面積為8,,∴.解得.∵函數(shù)()的圖象經(jīng)過(guò)點(diǎn),∴.(2)由(1)得點(diǎn)C的坐標(biāo)為.①如圖,當(dāng)時(shí),設(shè)直線與x軸,y軸的交點(diǎn)分別為點(diǎn),.由CD⊥x軸于點(diǎn)D可得CD∥.∴△CD∽△O.∴.∵,∴.∴.∴點(diǎn)的坐標(biāo)為.②如圖,當(dāng)時(shí),設(shè)直線與x軸,y軸的交點(diǎn)分別為點(diǎn),.同理可得CD∥,.∵,∴為線段的中點(diǎn),.∴.∴點(diǎn)的坐標(biāo)為.綜上所述,點(diǎn)F的坐標(biāo)為,.點(diǎn)睛:本題考查了反比例函數(shù)綜合題、一次函數(shù)的應(yīng)用、三角形的面積公式等知識(shí),解題的關(guān)鍵是會(huì)用方程的思想思考問(wèn)題,會(huì)用分類討論的思想思考問(wèn)題,屬于中考?jí)狠S題.23、(1)x=;(2)x>3;數(shù)軸見(jiàn)解析;【解析】

(1)先把分式方程轉(zhuǎn)化成整式方程,求出方程的解,再進(jìn)行檢驗(yàn)即可;(2)先求出每個(gè)不等式的解集,再求出不等式組的解集即可.【詳解】解:(1)方程兩邊都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:檢驗(yàn):當(dāng)時(shí),(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等式①得:x>1,解不等式②得:x>3,∴不等式組的解集為x>3,在數(shù)軸上表示為:.【點(diǎn)睛】本題考查了解分式方程和解一元一次不等式組、在數(shù)軸上表示不等式組的解集等知識(shí)點(diǎn),能把分式方程轉(zhuǎn)化成整式方程是解(1)的關(guān)鍵,能根據(jù)不等式的解集得出不等式組的解集是解(2)的關(guān)鍵.24、(I)(10,4)或(6,4)(II)C′(6,2)(III)①C′(8,4)②C′(,﹣)【解析】

(I)如圖①,當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,只要證明B、C′、D′共線即可解決問(wèn)題,再根據(jù)對(duì)稱性確定D″的坐標(biāo);(II)如圖②,當(dāng)α=60°時(shí),作C′K⊥AC于K.解直角三角形求出OK,C′K即可解決問(wèn)題;(III)分兩種情形分別求解即可解決問(wèn)題;【詳解】解:(I)如圖①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴當(dāng)OB∥AC′,四邊形OBC′A是平行四邊形,∵∠AOB=90°,∴四邊形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共線,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=OB=2,∴D′(10,4),根據(jù)對(duì)稱性可知,點(diǎn)D″在線段BC′上時(shí),D″(6,4)也滿足條件.綜上所述,滿足條件的點(diǎn)D坐標(biāo)(10,4)或(6,4).(II)如圖②,當(dāng)α=60°時(shí),作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=2,∴OK=6,∴C′(6,2).(III)①如圖③中,當(dāng)B、C′、D′共線時(shí),由(Ⅰ)可知,C′(8,4).②如圖④中,當(dāng)B、C′、D′共線時(shí),BD′交OA于F,易證△BOF≌△AC′F,∴OF=FC′,設(shè)OF=FC′=x,在Rt△ABC′中,BC′==8,在RT△BOF中,OB=4,OF=x,BF=8﹣x,∴(8﹣x)2=42+x2,解得x=3,∴OF=FC′=3,BF=5,作C′K⊥OA于K,∵OB∥KC′,∴==,∴==,∴KC′=,KF=,∴OK=,∴C′(,﹣).【點(diǎn)睛】本題考查三角形綜合題、旋轉(zhuǎn)變換、矩形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是靈活應(yīng)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用分類討論的思想思考問(wèn)題,屬于中考?jí)狠S題.25、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形;證明見(jiàn)解析;(3)(,2)或(,﹣2).【解析】

(1)由條件可求得拋物線的頂點(diǎn)坐標(biāo)及A點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(2)由B、D、E的坐標(biāo)可分別求得DE、BD和BE的長(zhǎng),再利用勾股定理的逆定理可進(jìn)行判斷;(3)由B、E的坐標(biāo)可先求得直線BE的解析式,則可求得F點(diǎn)的坐標(biāo),當(dāng)AF為邊時(shí),則有FM∥AN且FM=AN,則可求得M點(diǎn)的縱坐標(biāo),代入拋物線解析式可求得M點(diǎn)坐標(biāo);當(dāng)AF為對(duì)角線時(shí),由A、F的坐標(biāo)可求得平行四邊形的對(duì)稱中心,可設(shè)出M點(diǎn)坐標(biāo),則可表示出N點(diǎn)坐標(biāo),再由N點(diǎn)在x軸上可得到關(guān)于M點(diǎn)坐標(biāo)的方程,可求得M點(diǎn)坐標(biāo).【詳解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經(jīng)過(guò)O、A兩點(diǎn),∴拋物線頂點(diǎn)坐標(biāo)為(2,3),∴可設(shè)拋物線解析式為y=a(x﹣2)2+3,把A點(diǎn)坐標(biāo)代入可得0=a(4﹣2)2+3,解得a=﹣,∴拋物線解析式為y=﹣(x﹣2)2+3,即y=﹣x2+3x;(2)△EDB為等腰直角三角形.證明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB為等腰直角三角形;(3)存在.理由如下:設(shè)直線BE解析式為y=kx+b,把B、E坐標(biāo)代入可得,解得,∴直線BE解析式為y=x+1,當(dāng)x=2時(shí),y=2,∴F(2,2),①當(dāng)AF為平行四邊形的一邊時(shí),則M到x軸的距離與F到x軸的距離相等,即M到x軸的距離為2,∴點(diǎn)M的縱坐標(biāo)為2或﹣2,在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對(duì)稱軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,2);在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,∵點(diǎn)M在拋物線對(duì)稱軸右側(cè),∴x>2,∴x=,∴M點(diǎn)坐標(biāo)為(,﹣

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論