




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
July2022
TITLE
doc.:IEEE802.11-22/0987r
21
Submission page
PAGE
3
XiaofeiWang(InterDigitalInc.)
IEEEP802.11
WirelessLANs
IEEE802.11AIMLTIGTechnicalReportDraft
Date:2022-07-06
Author(s):
Name
Affiliation
Address
Phone
XiaofeiWang
InterDigitalInc.
111West33rdStreet
NewYork,NY10120
USA
+1-607-592-2727
Xiaofei.wang@
MingGan
Huawei
Ming.gan@
ZinanLin
InterDigital
RuiYang
InterDigital
AiguoYan
Zeku
JunghoonSuh
Huawei
ZiyangGuo
Huawei
MarcoHernadez
NICT
LiangxiaoXin
Zeku
Abstract
ThisdocumentcontainsthetechnicalreportoftheIEEE802.11AIMLTIG.
R0:initialoutline
R1:insertionofUsecase1
R2:insertionofIntroduction
TableofContents
Introduction
Terminologies
AIML ArtificialIntelligence/MachineLearning
CSI ChannelStateInformation
UHR UltraHighReliability
Backgroundinformation
ArtificialIntelligence/MachineLearning(AI/ML)algorithmshavemadesignificantprogressandarebeingappliedinmanydomains,includingmedicaldiagnosis,speechrecognition,computervision,andintegrationofvisionandcontrolforrobotics.Inaddition,AI/MLalgorithmsareemergingasimportantcomponentsinmanyapplicationssuchasautonomousdriving,languagetranslationandhuman-machineinteractions.
TraditionalAI/MLtechniquesarebasedonacentralizedmodelwhichrequiresexchangingalargeamountofdatabetweendatasourcesandacentralizedserver.Morerecently,distributedAI/MLalgorithmssuchasfederatedlearninghavebeendevelopedthatwillallowmoreanalysisatthesourceandreducetheamountofdatathatneedtobeexchanged,thoughtheexpectedamountofexchangeddataremainssignificant.Withtheprevalenceofwirelessnetworksandcommunications,muchoftheexchangeddataisexpectedtobecarriedthroughwirelessnetworks,suchasIEEE802.11WLANnetworks.
StudieshaveshownthatAI/MLalgorithmscanhelpimprovetheperformanceforwirelesscommunicationnetworks,byprovidingbetterresourceusage,lowerenergyconsumption,higherreliabilityandmorerobustnesstoachangingenvironment.Asthesealgorithmsbecomemorematureandcosteffective,WLANmayleverageAI/MLforenhancednetworkperformanceanduserexperience.
InMay2022,theIEEE802.11WorkingGroup(WG)hasapprovedtheformingoftheAIMLTaskInterestGroup(TIG)bythefollowingmotion[1]:
Motion5:TIGRe:AI/MLusein802.11
ApproveformationofaTopicInterestGroup(TIG)to:
(a)describeusecasesforArtificialIntelligence/MachineLearning(AI/ML)applicabilityin802.11systemsand
(b)investigatethetechnicalfeasibilityoffeaturesenablingsupportofAI/ML.
TheTIGistocompleteareportonthistopicatorbeforetheMarch2023session.
ThistechnicalreportisthefinalreportoftheAIMLTIGtotheIEEE802.11WGdetailingvariousAIMLusecasesdiscussedduringtheAIMLTIG.Foreachusecase,anumberofKeyPerformanceIndicators(KPIs)havebeenidentifiedandrequirementsandtechnicalfeasibilityanalysishavebeenprovided.
AIMLUsecasesforIEEE802.11
Note:usecasespotentiallycanbeorganizedintodifferentcategories
Note:usecasespotentiallycanidentifyKPIs
Usecase1:CSIfeedbackcompression
In802.11ax[1]andthedraftof802.11be[2],theAPinitiatesthesoundingsequencebytransmittingtheNDPAframefollowedbyaNDPwhichisusedforthegenerationofVmatrixatthebeamformee.UponthereceiptoftheNDPfromthebeamformer,thebeamforeeappliesacompressionscheme(i.e.,Givensrotations)ontheVmatrixandfeedsbacktheangelesinthebeamformingreportframe.
Itisindicatedin
REF_Ref118889474\r\h
[4][3]
thathighernumberofspatialstreamshasbeenaninevitabletrendinWiFiformorethanadecade.Theprelimilaryresults
REF_Ref118889474\r\h
[4][3]
REF_Ref118889476\r\h
[5][4]
REF_Ref118889495\r\h
[6][5]
showthatMIMOwithalargenumbertransmitterantennasandalargenumberofspatialstreams(e.g.,16spatialstreams)offerremarkablesystemperformancegainsonbothSU-MIMOandMU-MIMOcases.MultiAP(MAP)maybeonepotentialfeatureinthenext802.11generation,e.g.UHR
REF_Ref118797206\r\h
[7][6]
-
REF_Ref118796138\r\h
[10][9]
.LargenumberofspatialstreamscombinedwithMAPfeaturemayfurtherincreasethesoundingfeedbackairtimeoverheadifcoordinationbetweenAPs(e.g.,jointtransmission/reception,coordinatedbeamforming)isapplied.Largeamountofoverheadorprolongedsoundingproceduresmaynegativelyimpactthelatencyandlimitthesystemperformance.Therefore,thereisaneedtoreducetheCSIoverheadespeciallywhenthenumberoftransmitterantennasgoeshigherormultipleAPsperformjointorcoordinatedtransmission.
Somestudies(e.g.,
REF_Ref118797710\r\h
[11][10]
REF_Ref118797712\r\h
[12][11]
REF_Ref118983623\r\h
[13][12]
REF_Ref118988666\r\h
[14][13]
)haveshownthatAI/MLcanefficientlyreducetheCSIfeedbackandimprovethesystemthroughput.Forexample,motivatedbythenaturethattheCSImayfallintodifferentclustersduetothechannelsimilarityofnearbySTAs,iFORalgorithm
REF_Ref118797710\r\h
[11][10]
appliestheunsupervisedlearning,K-mean,totheCSIcompressiontoclassifytheanglevectorswhicharederivedfromVmatrix.Simulationresultsshowthatfora8x2SU-MIMO,iFORusesaround8%ofthenumberofbitsrequiredbytheexistingfeedbackmechanism(802.11ax)andboostthesystemthroughputbyupto52%.In
REF_Ref118797712\r\h
[12][11]
,anotherunsupervisedlearning,DeepNeuralNetworkAutoencoder(DNN-AE)isappliedtoCSIanglevectorsandfurthercompressesthederivedangles(LB-SciFi)byleveraingthecompressioncapabilityofDNNs.ExperimentalresultsshowthatLB-SciFireducesthefeedbackoverheadby73%andincreasesthenetworkthroughputby69%onaverage.
ThisusecaseproposestoapplyAI/MLtechniquetoCSIfeedbackschemestoreducetheCSIoverheadwithminimumlossofPERperformance.
KPIsconsideredinthisusecaseareproposedasfollows:
Numberoffeedbackbitspersubcarriergroup
AchievedPER
BothSU-MIMOandMU-MIMOcasesneedtobeconsidered
AdditionalAIMLoverheadcompredwithcompressionsaving
OneexampleistheratiobetweenthenumberofadditionalbitsrequiredbyAIMLprocess(includingdatausedformodeltraining/inference
REF_Ref119303357\r\h
[15][14]
themodelparameters,theadditionalsignaling)andthenumberofbitssavedbytheCSIfeedbackscheme.Inthisexample,ifthedatausedformodeltrainingthatisperformedbytheAPfullyreliesonthelegacyCSIreport,thentheadditionalAIMLusedformodeltraining/inferencemaybe0.
Computationcomplexity/Latency:
AdditionaldelayorcomputationisintroducedbyAIMLprocessing
Eveluationmethodologyneedstobeestablished.
Usecase2
UsecaseN
RequirementsandPotentialfeaturesanalysis(highlevel)
Requirements
RequirementsUsecase1:CSIfeedbackcompression
Performanceshouldfollowtheguidiancebelow:
CSIairtimereduction:achievearitimereductionofCSIfeedbackover802.11beforagivenNrxNcMIMO,whereNristhenumberofrowsinthecompressedbeamformingfeeedbackmatrix,Ncisthenumberofcolumnsinthecompressedbeamformingfeedbackmatrix.
AdditionaloverheadusedforAIMLprocess:minimizetheadditionaloverheadusedforAIMLprocess.AdditionaloverheadmayincludethedatausedforAIMLmodeltraining/inference[14],themodelparametersandadditionalsignalling.ThedatausedforAIMLmodeltraining/inference[14]canreusethelegecyCSIreportdata.
PacketErrorrate(PER):guaranteeminimumSNRlosscomparedwith802.11betoachievethetargetPER(e.g.,1%and/or10%)atagivenMCSinalltypesofchannels
REF_Ref119303329\r\h
[16][15]
.
Computationcomplexity/Latency:minimizetheadditionalcomputationcomplexityorlatencyrequiredbytheAIMLprocess
Potentialfeaturesanalysis
Technicalfeasibilityanalysis
Standardsimpact
UsecaseofCSIfeedbackcompression
Thestandardimpactmayinclude:
Additionalsignaling(e.g.,betweenAPandnon-APSTAs)requiredbyAIMLprocessPlaceholderforadditionaltechnicalfeasibilityanalysis
Technicalfeasibility
UsecaseofCSIfeedbackcompression
Thefollowingmetricswillbestudied:
Dataavailabilityandaccesibility:TherearesomeSTAsthatareabletousethedatatoperformAIMLmodeltrainingand/orinference
REF_Ref119086275\r\h
[15][14]
.Thedatausedformodeltrainingand/orinferenceshallbeaccessiblefortheseSTAs.
AP/edgecomputingbasedAIML:Datamaybecollectedfromnon-APSTAs.Thelegeacy802.11CSIreportsmaybeusedastrainingdata.
DevicecomputingbasedAIML:DatashouldbeavailableatallSTAsthatsupportAIMLprocess.
Hardware/softwarecapability:TheSTAsthatuseAIMLtogeneratetheAIMLenabledCSIfeedbackcompressionshallhavethehardwareandsoftwarecapabilitytosupportAIMLalgorithm(s).
AP/edgecomputingbasedAIML
REF_Ref119085527\r\h
[17][16]
:Extradataandmodel(e.g.,modelparameters)exchangemayberequiredtosupportAP/edgecomputingbasedAIML.However,computationisnotexpectedtobelocatedatAPoredgecomputingresourcesforwhichhighercomputationcapabilitiesisexpected.
DevicecomputingbasedAIML
REF_Ref119085527\r\h
[17][16]
:STAsthatsupportAIMLmayberequiredtohaveextracomputationcapability.Extradataandmodel(e.g.,modelparameters)exchangebetweenSTAsmayalsoberequiredtosupportdevicecomputingbasedAIML.
Summary
References
11-22/597r3:May2022WorkingGroupMotions,May18,2022
IEEE802.11-REVmeD2.0,October2022
IEEEP802.11beD2.2,October2022
802.11-18/0818r3,16SpatialStreamSupportinNextGenerationWLAN
802.11-20/1877r1,16SpatialStreamSupport
802.11-20/1535r66,CompendiumofstrawpollsandpotentialchangestotheSpecificationFrameworkDocumentPart2
802.11-22/1515,Acandidatefeature:M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年檔案保管細則解讀試題及答案
- 2024年二級建造師考試未來展望試題及答案
- 初中能量形式轉(zhuǎn)換試題及答案
- 多媒體設(shè)計師技術(shù)前沿知識試題及答案
- 公務(wù)員數(shù)理邏輯試題及答案
- 2024年稅務(wù)師考生必知技能試題及答案
- 如何應(yīng)對統(tǒng)計師考試壓力試題及答案
- 2024年考題預(yù)測與解析試題及答案
- 手把手教你稅務(wù)師考試試題及答案
- 咖啡與健康嗜好關(guān)系試題及答案
- 2024中國山東省集中供熱行業(yè)發(fā)展趨勢預(yù)測及投資戰(zhàn)略咨詢報告
- 企業(yè)主要負責人安全培訓試題及答案 完整
- 七年級數(shù)學新北師大版(2024)下冊第一章《整式的乘除》單元檢測習題(含簡單答案)
- 2024員工質(zhì)量意識培訓
- 《冠心病》課件(完整版)
- NB_T 10438-2020《風力發(fā)電機組 電控偏航控制系統(tǒng)技術(shù)條件》_(高清最新)
- 導向系統(tǒng)設(shè)計(課堂PPT)
- 混凝土凝結(jié)時間計算及報告(樣表)
- 高中生物 第4節(jié)細胞的癌變課件 新人教版必修1
- 石料生產(chǎn)線項目投資建設(shè)方案
- 基于單片機的智能溫變暖手寶的設(shè)計
評論
0/150
提交評論