4卷積積分及其性質(zhì)_第1頁(yè)
4卷積積分及其性質(zhì)_第2頁(yè)
4卷積積分及其性質(zhì)_第3頁(yè)
4卷積積分及其性質(zhì)_第4頁(yè)
4卷積積分及其性質(zhì)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

§2.3卷積積分

信號(hào)的時(shí)域分解與卷積積分

卷積的圖解法第一頁(yè),共三十頁(yè)。2.3卷積積分2.3卷積積分一、信號(hào)的時(shí)域分解與卷積積分1.信號(hào)的時(shí)域分解(1)預(yù)備知識(shí)問(wèn)

f1(t)=?

p(t)直觀看出第二頁(yè),共三十頁(yè)。2.3卷積積分(2)任意信號(hào)分解“0”號(hào)脈沖高度f(wàn)(0),寬度為△,用p(t)表示為:f(0)△p(t)“1”號(hào)脈沖高度f(wàn)(△),寬度為△,用p(t-△)表示為:

f(△)△p(t-△)“-1”號(hào)脈沖高度f(wàn)(-△)、寬度為△,用p(t+△)表示為:f(-△)△p(t+△)第三頁(yè),共三十頁(yè)。2.3卷積積分2.任意信號(hào)作用下的零狀態(tài)響應(yīng)yzs(t)f(t)根據(jù)h(t)的定義:δ(t)

h(t)由時(shí)不變性:δ(t

-τ)h(t-τ)f(τ)δ(t

-τ)由齊次性:f(τ)h(t-τ)由疊加性:‖f(t)‖yzs(t)卷積積分第四頁(yè),共三十頁(yè)。2.3卷積積分3.卷積積分的定義已知定義在區(qū)間(–∞,∞)上的兩個(gè)函數(shù)f1(t)和f2(t),則定義積分為f1(t)與f2(t)的卷積積分,簡(jiǎn)稱(chēng)卷積;記為

f(t)=f1(t)*f2(t)注意:積分是在虛設(shè)的變量τ下進(jìn)行的,τ為積分變量,t為參變量。結(jié)果仍為t的函數(shù)。第五頁(yè),共三十頁(yè)。2.3卷積積分例:f(t)=et,(-∞<t<∞),h(t)=(6e-2t–1)ε(t),求yzs(t)。解:采用定義法卷積。當(dāng)t<τ,即τ>t時(shí),ε(t-τ)=0第六頁(yè),共三十頁(yè)。2.3卷積積分用定義法計(jì)算卷積積分步驟:(1)換元:f1(t)

→f1(τ),f2(t)→f2(t-τ)(2)視情況變積分限:

f1(τ)f2(t-τ)中是否含有ε(τ

)

或ε

(t-τ),如果有ε(τ

)

,則將積分下限換為0,如果有ε

(t-τ),則將積分上限換為t(注意:t為參變量,τ為自變量)。(3)積分:與普通函數(shù)積分一致。第七頁(yè),共三十頁(yè)。2.3卷積積分二、卷積的圖解法(1)換元:t換為τ→得f1(τ),f2(τ)(2)反轉(zhuǎn)平移:由f2(τ)反轉(zhuǎn)→f2(–τ),然后右移t→f2(t-τ)(3)乘積:f1(τ)f2(t-τ)(4)積分:τ從–∞到∞對(duì)乘積項(xiàng)積分。

注意:t為參變量。用圖解法計(jì)算卷積積分步驟:第八頁(yè),共三十頁(yè)。2.3卷積積分例:f(t),h(t)

如圖,求yzs(t)=f(t)*h(t)。解:采用圖解法卷積。h(t-τ)h(τ)反折h(-τ)平移t①t<0時(shí),h(t-τ)向左移h(t-τ)f(τ)=0,故

yzs(t)=0②0≤t≤1

時(shí),h(t-τ)向右移③1≤t≤2時(shí)⑤3≤t時(shí)h(t-τ)f(τ)=0,故

yzs(t)=0f(t)函數(shù)形式復(fù)雜換元為f(τ)。

h(t)換元h(τ)④2≤t≤3

時(shí)0h(t-τ)h(-τ)f(τ)h(t-τ)第九頁(yè),共三十頁(yè)。2.3卷積積分圖解法一般比較繁瑣,但若只求某一時(shí)刻卷積值時(shí)還是比較方便的。確定積分的上下限是關(guān)鍵。例:f1(t)、f2(t)如圖所示,已知f(t)=f2(t)*f1(t),求f(2)=?f1(-τ)f1(2-τ)解:(1)換元(2)f1(τ)得f1(–τ)(3)f1(–τ)右移2得f1(2–τ)(4)f1(2–τ)乘f2(τ)(5)積分,得f(2)=0(面積為0)第十頁(yè),共三十頁(yè)?!?.4卷積積分的性質(zhì)

卷積代數(shù)運(yùn)算與沖激函數(shù)或階躍函數(shù)的卷積微分積分性質(zhì)卷積的時(shí)移特性

卷積積分是一種數(shù)學(xué)運(yùn)算,它有許多重要的性質(zhì)(或運(yùn)算規(guī)則),靈活地運(yùn)用它們能簡(jiǎn)化卷積運(yùn)算。第十一頁(yè),共三十頁(yè)。2.4卷積積分的性質(zhì)下面討論均設(shè)卷積積分是收斂的(或存在的)。一、卷積代數(shù)滿(mǎn)足乘法的三律:交換律:2.分配律:系統(tǒng)并聯(lián)運(yùn)算結(jié)合律:系統(tǒng)級(jí)聯(lián)運(yùn)算證明:第十二頁(yè),共三十頁(yè)。系統(tǒng)并聯(lián)系統(tǒng)并聯(lián),框圖表示:

結(jié)論:子系統(tǒng)并聯(lián)時(shí),總系統(tǒng)的沖激響應(yīng)等于各子系統(tǒng)沖激響應(yīng)之和。2.4卷積積分的性質(zhì)第十三頁(yè),共三十頁(yè)。系統(tǒng)級(jí)聯(lián)系統(tǒng)級(jí)聯(lián),框圖表示:

結(jié)論:子系統(tǒng)級(jí)聯(lián)時(shí),總的沖激響應(yīng)等于子系統(tǒng)沖激響應(yīng)的卷積。

2.4卷積積分的性質(zhì)第十四頁(yè),共三十頁(yè)。2.4卷積積分的性質(zhì)二、函數(shù)與沖激函數(shù)的卷積1.f(t)*δ(t)=δ(t)*f(t)=f(t)證:f(t)*δ(t–t0)=f(t–t0)2.f(t)*δ’(t)=f’(t)證:f(t)*δ(n)(t)=f(n)(t)第十五頁(yè),共三十頁(yè)。3.f(t)*ε(t)ε(t)*ε(t)=?2.4卷積積分的性質(zhì)注意區(qū)分:tε(t)特例:第十六頁(yè),共三十頁(yè)。2.4卷積積分的性質(zhì)三、卷積的微積分性質(zhì)1.證:上式=δ(n)(t)*[f1(t)*f2(t)]=[δ(n)(t)*f1(t)]*f2(t)=f1(n)(t)*f2(t)2.證:上式=ε(t)*[f1(t)*f2(t)]=[ε(t)*f1(t)]*f2(t)=f1(–1)(t)*f2(t)3.在f1(–∞)=0和f2

(–∞)=0的前提下,

f1(t)*f2(t)=f1’(t)*f2(–1)(t)第十七頁(yè),共三十頁(yè)。2.4卷積積分的性質(zhì)例1:f1(t)=1,f2(t)=e–tε(t),求f1(t)*f2(t)

解:通常復(fù)雜函數(shù)放前面,代入定義式得

f2(t)*f1(t)=

注意:套用f1(t)*f2(t)=f1’(t)*f2(–1)(t)=0*f2(–1)(t)=0顯然是錯(cuò)誤的。例2:f1(t)如圖,f2(t)=e–tε(t),求f1(t)*f2(t)解法一:f1(t)*f2(t)=f1’(t)*f2(–1)(t)f1’(t)=δ

(t)–δ

(t–2)f1(t)*f2(t)=(1-e–t)ε(t)–[1-e–(t-2)]ε(t-2)第十八頁(yè),共三十頁(yè)。例2:圖(a)系統(tǒng)由三個(gè)子系統(tǒng)構(gòu)成,已知各子系統(tǒng)的沖激響應(yīng)如圖(b)所示。求復(fù)合系統(tǒng)的沖激響應(yīng),并畫(huà)出它的波形。(a)(b)解:如圖(c)所示

(c)第十九頁(yè),共三十頁(yè)。2.4卷積積分的性質(zhì)解:f1(t)=ε

(t)–ε

(t–2)f1(t)*f2(t)=ε

(t)*f2(t)–ε

(t–2)*f2(t)

ε

(t)*f2(t)=f2(-1)(t)四、卷積的時(shí)移特性若f(t)=f1(t)*f2(t),則f1(t–t1)*f2(t–t2)=f1(t–t1–t2)*f2(t)=f1(t)*f2(t–t1–t2)=f(t–t1–t2)前例:f1(t)如圖,f2(t)=e–tε(t),求f1(t)*f2(t)利用時(shí)移特性,有ε

(t–2)*f2(t)=f2(-1)(t–2)f1(t)*f2(t)=(1-e–t)ε(t)–[1-e–(t-2)]ε(t-2)第二十頁(yè),共三十頁(yè)。2.4卷積積分的性質(zhì)例:f1(t),f2(t)如圖,求f1(t)*f2(t)解:f1(t)=2ε

(t)–2ε

(t–1)f2(t)=ε

(t+1)–ε

(t–1)f1(t)*f2(t)=2

ε

(t)*ε

(t+1)–2

ε

(t)*ε

(t–1)–2ε

(t–1)*ε

(t+1)+2ε

(t–1)*ε

(t–1)由于ε

(t)*ε

(t)=tε

(t)據(jù)時(shí)移特性,有f1(t)*f2(t)=2(t+1)ε

(t+1)-2(t–1)ε

(t–1)–2tε

(t)+2(t–2)ε

(t–2)第二十一頁(yè),共三十頁(yè)。2.4卷積積分的性質(zhì)求卷積是本章的重點(diǎn)與難點(diǎn)。求解卷積的方法可歸納為:(1)利用定義式,直接進(jìn)行積分。對(duì)于容易求積分的函數(shù)比較有效。如指數(shù)函數(shù),多項(xiàng)式函數(shù)等。(2)圖解法。特別適用于求某時(shí)刻點(diǎn)上的卷積值。(3)利用性質(zhì)。比較靈活。三者常常結(jié)合起來(lái)使用。第二十二頁(yè),共三十頁(yè)。

相關(guān)函數(shù)是研究一個(gè)函數(shù)和另一個(gè)函數(shù)經(jīng)過(guò)一個(gè)延時(shí)τ后的相似程度,它被廣泛應(yīng)用于雷達(dá)回波的識(shí)別、通信同步信號(hào)的識(shí)別等領(lǐng)域,是鑒別信號(hào)的有力工具。相關(guān)是一種與卷積類(lèi)似的運(yùn)算。與卷積不同的是沒(méi)有一個(gè)函數(shù)的反轉(zhuǎn)。

相關(guān)函數(shù)的定義相關(guān)與卷積的關(guān)系相關(guān)函數(shù)的圖解五、相關(guān)函數(shù)2.4卷積積分的性質(zhì)第二十三頁(yè),共三十頁(yè)。1.實(shí)能量有限信號(hào)相關(guān)函數(shù)的定義兩個(gè)實(shí)能量有限函數(shù)f1(t)和f2(t)的互相關(guān)函數(shù)定義為

由上式可得,R12(τ)=R21(–τ)。(2)自相關(guān)函數(shù):顯然,R(-τ)=R(τ)

,R(τ)為偶函數(shù)。2.4卷積積分的性質(zhì)在上式中若f1(t)=f2(t)=f(t),得自相關(guān)函數(shù)(1)互相關(guān)函數(shù):第二十四頁(yè),共三十頁(yè)。2.相關(guān)與卷積的關(guān)系可見(jiàn),R12(t)=f1(t)*f2(–t),同理,R21(t)=f1(–t)*f2(t)。特別地,若f1(t)和f2(t)均為實(shí)偶函數(shù),則卷積與相關(guān)完全相同。2.4卷積積分的性質(zhì)第二十五頁(yè),共三十頁(yè)。PPT內(nèi)容概述§2.3卷積積分?!?.3卷積積分。2.3卷積積分。2.3卷積積分。f(△)△p(t-△)。f(-△)△p(t+△)。h(t-τ)。①t<0時(shí),h(t-τ)向左移。②0≤t

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論