版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版九年級(jí)上冊(cè)數(shù)學(xué)期末考試試題
一、選擇題。(每小題只有一個(gè)正確答案,每小題3分,共30分)
2.已知一元二次方程x2+mx-3=0的一個(gè)根為x=l,則m等于()
A.1B.2C.3D.-3
3.如圖,已知RtD4BC中,□C=90。,口/=30。,AC=6,以點(diǎn)2為圓心,3為半徑作08,則點(diǎn)C與口2的位置關(guān)
A.點(diǎn)C在Q8內(nèi)B.點(diǎn)。在08上C.點(diǎn)C在QB外D.無法確定
4.下列函數(shù)的圖象位于第一、第三象限的是()
2
A.y=-X2B.y=x2C.y=—
5.一個(gè)盒子內(nèi)裝有大小、形狀相同的四個(gè)球,其中紅球1個(gè)、白球3個(gè),小明從中隨機(jī)摸出一個(gè)球后不放回,再
摸出一個(gè)球,則事件“兩次都摸到白球”是()
A.必然事件B.確定事件C.隨機(jī)事件D.不可能事件
6.如圖,48是口。的直徑,弦???8于點(diǎn)E,連接4D,若月8=10,CZ)=8,則4D的長為()
A.8B.2aC.3710D.4后
7.方程2x2-7x+5=0的根的情況是()
A.有兩個(gè)相等的實(shí)數(shù)根B.有兩個(gè)不相等的實(shí)數(shù)根C.無實(shí)數(shù)根D.兩根異號(hào)
8.已知二次函數(shù)y=-2x2+8x+c的圖象過點(diǎn)A(-3j]),8(-1,2),。(6%),則々,玄々的大小關(guān)系是()
A.B.y<y<yC.y<y<yD.y<y<y
213321132123
1
9.某制藥廠2014年正產(chǎn)甲種藥品的成本是500元/kg,隨著生產(chǎn)技術(shù)的進(jìn)步,2016年生產(chǎn)甲種藥品的成本是320
元/kg,設(shè)該藥廠2014-2016年生產(chǎn)甲種藥品成本的年均下降率為x,則根據(jù)題意可列方程為()
A.500(1-x)2=320B.500(1+x)2=320
C.320(1-x)2=500D.3320(1+x)2=500
10.如圖,點(diǎn)/,B,C在口。上,點(diǎn)。是延長線上一點(diǎn),若Q4OC=110。,則口CAD的度數(shù)為()
C.55°D.62.5°
11.如圖,口48。中,AC=5,AB=\3,將口48。繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)當(dāng)點(diǎn)/的對(duì)應(yīng)點(diǎn)落在2C邊上的點(diǎn)。處時(shí),點(diǎn)
2的對(duì)應(yīng)點(diǎn)恰好落在NC延長線上的點(diǎn)E處,則CE的長為()
A.5B.12C.13D.18
b+c
12.二次函數(shù)y=〃x2+bx+c的圖象如下左圖,則一次函數(shù)y=ox+/?2_4〃c與反比例函數(shù)y=----.在同一坐標(biāo)系
2
二、填空題
13.一元二次方程x2-2x+l=0的兩根之和等于.
14.將拋物線丫=(x+1)2+1向左平移2個(gè)單位長度,所得新拋物線的函數(shù)解析式為.
k3
15.反比例函數(shù)y=土上的圖象,當(dāng)x>0時(shí),y隨x的增大而增大,則k的取值范圍是.
尤
16.將一副撲克牌中的13張梅花牌洗勻后正面向下放在桌子上,從中隨機(jī)抽取一張,抽出的牌上的數(shù)小于8的概
率是.
17.如圖,圓錐的底面半徑r為6,高h(yuǎn)為8,則圓錐的側(cè)面展開圖扇形的圓心角度數(shù)為
18.如圖,點(diǎn)。,E是64BC內(nèi)的兩點(diǎn),且?!?/48,連結(jié)4D,BE,CE.若AB=90,DE=2歷,3C=10,口4BC
=75°,則AD+BE+CE的最小值為.
三、解答題
19.解方程:X2+3X+2=0.
20.如圖,拋物線6x+c與無軸交于/(I,0),3兩點(diǎn),與y軸交于C(0,4).
(1)求拋物線的解析式;
(2)作CD//x軸交拋物線于。,連接/C,AD,求9/CD的面積.
3
21.如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長都是一個(gè)單位長度,在平面直角坐標(biāo)系內(nèi),AAB。的三個(gè)頂點(diǎn)坐標(biāo)
分別為A(T,3),2(-4,3),O(O,O).
(1)畫出關(guān)于x軸對(duì)稱的AAB。,并寫出點(diǎn)A的坐標(biāo);
111
(2)畫出AAB。繞點(diǎn)。順時(shí)針旋轉(zhuǎn)90。后得到的「'AB。,并寫出點(diǎn)仆的坐標(biāo);
222
(3)在(2)的條件下,求點(diǎn)/旋轉(zhuǎn)到點(diǎn)4所經(jīng)過的路徑長(結(jié)果保留兀).
k
22.如圖,直線y=ax+6與反比例函數(shù)>=一(x<0)的圖象相交于點(diǎn)/、點(diǎn)8,與x軸交于點(diǎn)C,其中點(diǎn)/的坐標(biāo)
x
為(-1,2),點(diǎn)3的橫坐標(biāo)為-2.
(1)求出一次函數(shù)和反比例函數(shù)的關(guān)系式;
(2)當(dāng)x<0時(shí),根據(jù)圖象寫出反比例函數(shù)大于一次函數(shù)的x的取值范圍.
23.欽州市某中學(xué)為了解本校學(xué)生閱讀教育、科技、體育、藝術(shù)四類課外書的喜愛情況,隨機(jī)抽取了部分學(xué)生進(jìn)行
問卷調(diào)查,在此次調(diào)查中,甲、乙兩班分別有2人特別喜愛閱讀科技書報(bào),若從這4人中隨機(jī)抽取2人去參加科普
比賽活動(dòng),請(qǐng)用列表法或畫樹狀圖的方法,求所抽取的2人來自不同班級(jí)的概率.
24.某商店準(zhǔn)備進(jìn)一批小工藝品,每件的成本是40元,經(jīng)市場調(diào)查,銷售單價(jià)為50元,每天銷售量為100個(gè),若
銷售單價(jià)每增加1元,銷售量將減少10個(gè).
(1)求每天銷售小工藝品的利潤y(元)和銷售單價(jià)x(元)之間的函數(shù)解析式;
4
(2)商店若準(zhǔn)備每天銷售小工藝品獲利960元,則每天銷售多少個(gè)?銷售單價(jià)定為多少元?
(3)直接寫出銷售單價(jià)為多少元時(shí),每天銷售小工藝品的利潤最大?最大利潤是多少?
25.如圖,A8是半圓。的直徑,。為8C的中點(diǎn),延長。。交弧于點(diǎn)區(qū)點(diǎn)尸為0。的延長線上一點(diǎn)且滿足
NOBC=NOFC.
(1)求證:B為0。的切線;
(2)若。E=l,ZABC=30。.□求。。的半徑;□求sin/R4O的值.
(3)若四邊形ACTO是平行四邊形,求sin/BAD的值.
26.如圖,已知拋物線y=axHbx+c(a#0)與x軸交于點(diǎn)A(-1,0),B(4,0),與y軸交于點(diǎn)C(0,4).
(1)求此拋物線的解析式;
(2)設(shè)點(diǎn)P(2,n)在此拋物線上,AP交y軸于點(diǎn)E,連接BE,BP,請(qǐng)判斷DBEP的形狀,并說明理由;
(3)設(shè)拋物線的對(duì)稱軸交x軸于點(diǎn)D,在線段BC上是否存在點(diǎn)Q,使得DDBQ成為等腰直角三角形?若存在,
求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.
5
參考答案
1.D
【解析】
根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的定義逐項(xiàng)識(shí)別即可,在平面內(nèi),一個(gè)圖形經(jīng)過中心對(duì)稱能與原來的圖形重合,這
個(gè)圖形叫做叫做中心對(duì)稱圖形;一個(gè)圖形的一部分,以某條直線為對(duì)稱軸,經(jīng)過軸對(duì)稱能與圖形的另一部分重合,
這樣的圖形叫做軸對(duì)稱圖形.
【詳解】
A.是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,故不符合題意;
B.不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故不符合題意;
C,是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,故不符合題意;
D.既是軸對(duì)稱圖形又是中心對(duì)稱圖形,故符合題意;
故選D.
【點(diǎn)睛】
本題考查了軸對(duì)稱圖形和中心對(duì)稱圖形的識(shí)別,熟練掌握軸對(duì)稱圖形和中心對(duì)稱圖形的定義是解答本題的關(guān)鍵
2.B
【解析】
把尤=1代入方程,1+加-3=0,〃?=2,選B.
3.C
【分析】
欲求點(diǎn)C與口3的位置關(guān)系,關(guān)鍵是求出BC,再與半徑3進(jìn)行比較.若則點(diǎn)在圓內(nèi);若d=r,則點(diǎn)在圓上;
若d>r,則點(diǎn)在圓外.
【詳解】
解:□在RE4BC中,0^=90。,04=30。,
□AB=2BC,
有勾股定理得:
AB2-BC2=AC2,即(2BC)-BC2=62,
解得:BC=2^,
口以點(diǎn)8為圓心,3為半徑作08,
□點(diǎn)。在口5外.
6
故選:c.
【點(diǎn)睛】
本題主要考查了點(diǎn)與圓的位置關(guān)系,含30。角的直角三角形,勾股定理,熟練掌握直角三角形中,30。角所對(duì)的直
角邊等于斜邊的一半,點(diǎn)與圓的位置關(guān)系的判定是解題的關(guān)鍵.
4.C
【解析】
選項(xiàng)A,圖象過三,四象限,
選項(xiàng)B,圖象過一,二象限,
選項(xiàng)C,圖象過一,三象限,
選項(xiàng)D,圖象過二,四象限.
故選C.
5.C
【解析】因?yàn)榈谝淮尾淮_定是白球紅球,所以第二次也不確定,所以則事件兩次都摸到白球”是隨機(jī)事件,故選C.
6.D
【分析】
如圖,連接OD利用勾股定理求出再利用勾股定理求出即可.
【詳解】
解:如圖,連接OD
UABQCD,
CCE=ED=4,
nUOED=90°,OD=5,
□O£=yJcD2-ED2=J52-42=3,
UAE=OA+OE=8,
口4D=dAE?+DE2—,82+42=4下,
故選:D.
【點(diǎn)睛】
7
本題考查垂徑定理,勾股定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.
7.B
【詳解】
由題意得a=2,b=-1,c=5,
.=49-4x2x5=9>0,故有兩個(gè)不相等的實(shí)數(shù)根.故選B.
8.C
【分析】
根據(jù)二次函數(shù)圖象具有對(duì)稱性和二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,可以判斷無、為、%的大小,從而可以解答本題.
【詳解】
解:□y=-2x2+8x+c
口函數(shù)y=-2x2+8x+c的對(duì)稱軸為直線尤=2,開口向下,當(dāng)x<2時(shí),y隨x的增大而增大,當(dāng)x>2時(shí),y隨x的
增大而減小,
□-3<-1<2
□「,
由二次函數(shù)的對(duì)稱性可知,X=6和X=-2的函數(shù)值相等
□-3<-2<-1<2
□y<y<y
132
故選c.
【點(diǎn)睛】
本題考查了二次函數(shù)的增減性.當(dāng)二次項(xiàng)系數(shù)。>0時(shí),在對(duì)稱軸的左邊,V隨x的增大而減小,在對(duì)稱軸的右邊,
V隨x的增大而增大;時(shí),在對(duì)稱軸的左邊,y隨尤的增大而增大,在對(duì)稱軸的右邊,了隨x的增大而減小.
9.A
【解析】
設(shè)該藥廠2014-2016年生產(chǎn)甲種藥品成本的年均下降率為無,則根據(jù)題意可列方程為500(1-無)2=320.故選A.
點(diǎn)睛:平均增長率(降低)百分率是x,增長(降低)一次,一般形式為。(l±x)=b;
增長(降低)兩次,一般形式為a(l±x)2=6;增長(降低)〃次,一般形式為。(l±x)產(chǎn)6,。為起始時(shí)間的有關(guān)
數(shù)量,6為終止時(shí)間的有關(guān)數(shù)量.
10.C
【分析】
設(shè)點(diǎn)E是優(yōu)弧NC(不與4C重合)上的一點(diǎn),則□/EC=55。,根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)即可求得.
8
【詳解】
解:設(shè)點(diǎn)E是優(yōu)弧NC(不與4C重合)上的一點(diǎn),連接/E、CE,
□□/OC=110。,
□□£,=-ZAOC=55°,
2
□四邊形42CE內(nèi)接于口。,
□□Z8C=180°—□£=125°,
BnCBD=180。一口/8。=55。.
故選:C.
【點(diǎn)睛】
本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.也
考查了圓內(nèi)接四邊形的性質(zhì),熟練掌握?qǐng)A周角定理是解決本題的關(guān)鍵.
11.B
【分析】
根據(jù)旋轉(zhuǎn)的性質(zhì)可得□/C8=QDCE=90。,再根據(jù)勾股定理可求得8c=12,最后再根據(jù)旋轉(zhuǎn)的性質(zhì)即可求得答案.
【詳解】
解:口旋轉(zhuǎn),
U3ACB=UDCE,
又□XC8+ODCE=180。,
□□/C8=□£><?£■=90。,
HAC=5,AB=\3,
□在RtDABC中,BC=VAB2-AC2=5/132-52=12,
口旋轉(zhuǎn),
ncE=BC=n,
故選:B.
【點(diǎn)睛】
本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,熟練掌握勾股定理的計(jì)算是解決本題的關(guān)鍵.
9
12.C
【分析】
根據(jù)二次函數(shù)圖像,確定二次函數(shù)系數(shù)的符號(hào),再確定一次函數(shù)與反比例函數(shù)的系數(shù),即可求得.
【詳解】
解:二次函數(shù)圖像開口向上,得到。>0
二次函數(shù)圖像與x軸有兩個(gè)交點(diǎn),得到匕2一4雙>0
二次函數(shù)的與1軸交點(diǎn)在無軸的下方,得到c<0
b
二次函數(shù)的對(duì)稱軸x=-得到匕<0
2a
□Z?+c<0
□一次函數(shù)y=ox+62-4ac圖像經(jīng)過一、二、三象限
反比例函數(shù)y=土h上c的圖像經(jīng)過二、四象限
X
故選:C.
【點(diǎn)睛】
此題主要考查了一次函數(shù)、反比例函數(shù)與二次函數(shù)圖像與系數(shù)的關(guān)系,熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.
13.2
【解析】由根與系數(shù)關(guān)系%+々=2,故答案為2.
14.y=(x+3)2+1
【解析】將拋物線產(chǎn)(x+1)2+1向左平移2個(gè)單位長度,y=(x+2+l)2+1=(x+3)2+1.
15.k<3.
【分析】
根據(jù)反比例函數(shù)的性質(zhì)解題.
【詳解】
□當(dāng)尤>0時(shí),y隨元的增大而增大,
□函數(shù)圖象必在第四象限,
口人-30,
口M3.
故答案為k<3.
【點(diǎn)睛】
考查反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)y=七Q/0),
當(dāng)人>0時(shí),圖象在第一、三象限在每個(gè)象限,y隨著x的增大而減小,
當(dāng)上<0時(shí),圖象在第二、四象限.在每個(gè)象限,y隨著X的增大而增大.
16.1
13
【解析】
7
小于8的數(shù)有7個(gè),所以P=w
17.216°
【解析】
由題意得,母線意"62+82=10,底面周長為12兀,
所以圓心展開圖,12兀=",解得〃=216。.
lot)
點(diǎn)睛:處理圓錐習(xí)題下的常用公式,圓錐側(cè)面展開圖是扇形.
圓錐底面圓半徑匕圓周率兀,母線I,
底面周長為17ir=7id,
側(cè)面展開圖弧長=底面圓周長=2?!贺,
側(cè)面展開圖面積=;義2兀?/=?!?,
圓錐全面積=兀/升兀〃,
扇形面積:—扇形弧長:黑(可以計(jì)算側(cè)面展開圖圓心角〃).
360180
18.13點(diǎn)
【分析】
過E點(diǎn)作EF//AD交43于尸,將ABET7繞點(diǎn)8逆時(shí)針旋轉(zhuǎn)60。,得到過/作FT?_LBC交C8延長線于H,
則ABEEl都是等邊三角形,可判斷四邊形4B即是平行四邊形,由已知分別可求”=20,BF=1Q,則
BE=EE',BF'=BF=7石,所以AO=EF=E'F',貝UA。+BE+CE=CE+EE'+E'F',當(dāng)C、E、E'、F'共線時(shí),40+BE+CE
有最小值為CF'的長,再由/ABC=75。,NFBF'=60°,可得NC8P=135。,ZBF,H=45°,在RtAD'MP中,
HF'=HB=-BF'=7>在RfDCF"中,CF'=4CHI+F'H2=1372>貝1JAO+BE+CE的最小值為13五.
2
【詳解】
解:過E點(diǎn)作所〃AO交A8于尸,將ABE/繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到口以尸,過尸作尸笈J_BC交CB延長線
于H,
.-.ABEE',ABF"都是等邊三角形,
:DE//AB,
..四邊形A莊曾是平行四邊形,
DE=I4I
n
.-.AF=2V2,
AB=9石,
BF=7萬,
BE=EE'<BF'=BF
AD=EF=E'F',
AD+BE+CE=CE+EE'+E'F',
.??當(dāng)C、E、E'、尸'共線時(shí),A。+BE+CE有最小值為CF'的長,
ZABC=75°,NFBF'=6Q°,
.-.ZCBF'=135°,NBF'H=45。,
在Rt^BF'H中,HF'=HB=—BF'=—x7石=7,
22
在Rf1CF'H中,CF'=ICH?+F'H。=J172+72=1342,
AD+BE+CE的最小值為13后,
故答案為13Vl.
【點(diǎn)睛】
本題考查軸對(duì)稱求最短距離,熟練掌握軸對(duì)稱的性質(zhì),通過構(gòu)造平行四邊形、旋轉(zhuǎn)三角形,確定/D+2E+CE有最
小值為C尸的長是解題的關(guān)鍵.
19.x「-1,x2=-2
【解析】
試題分析:十字相乘法解方程.
試題解析:
解:分解因式得:(x+1)(x+2)=0,
可得x+l=0或x+2=0,
n
解得:x=-1,x=-2.
20.⑴尸2尤2-6x+4;(2)6
【分析】
(1)根據(jù)待定系數(shù)法求得即可;
(2)求得。的坐標(biāo),然后根據(jù)三角形面積公式求得即可.
【詳解】
解:(1)口拋物線丁="2-6x+c與x軸交于N(1,0),B兩點(diǎn),與y軸交于C(0,4),
fa-6+c=0fa—2
□,,解得,,
[c=4[c=4
□拋物線的解析式為y=2x2-6x+4;
(2)令尸4,則2X2-6X+4=4,
解得X[=O無2=3,
DD(3,4),
口8=3,
□Suaco=*3x4=6.
【點(diǎn)睛】
本題考查了拋物線與x軸的交點(diǎn),待定系數(shù)法求二次函數(shù)的解析式,三角形的面積,熟練掌握待定系數(shù)法是解題的
關(guān)鍵.
21.(1)見解析,A(-1,-3);(2)見解析,4(3,1);(3)業(yè)。
122
【分析】
(1)分別作出點(diǎn)N、8關(guān)于x軸的對(duì)稱點(diǎn),然后依次連接即可,最后通過圖象可得點(diǎn)。的坐標(biāo);
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)分別作出點(diǎn)48繞點(diǎn)。旋轉(zhuǎn)90。的點(diǎn),然后依次連接,最后根據(jù)圖象可得點(diǎn)&的坐標(biāo);
(3)由(2)可先根據(jù)勾股定理求出04的長,然后根據(jù)弧長計(jì)算公式進(jìn)行求解.
【詳解】
解:(1)如圖所示:AA20即為所求,
11
□由圖象可得4(-1,-3);
(2)如圖所示:LAB。即為所求,
22
□由圖象可得A(3,1);
2
13
(3)由(2)的圖象可得:點(diǎn)/旋轉(zhuǎn)到點(diǎn)4所經(jīng)過的路徑為圓弧,
□0A=收+12=V10,
□點(diǎn)/旋轉(zhuǎn)到點(diǎn)4所經(jīng)過的路徑"儲(chǔ)9。;『日
【點(diǎn)睛】
本題主要考查旋轉(zhuǎn)的性質(zhì)、坐標(biāo)與軸對(duì)稱及弧長計(jì)算公式,熟練掌握旋轉(zhuǎn)的性質(zhì)、坐標(biāo)與軸對(duì)稱及弧長計(jì)算公式是
解題的關(guān)鍵.
2
22.(1)一次函數(shù)的解析式為y=x+3,反比例函數(shù)解析式為y=;(2)x<-2或-l<x<0
x
【分析】
(1)由點(diǎn)4的坐標(biāo)利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出反比例函數(shù)解析式,由點(diǎn)8的橫坐標(biāo)結(jié)合反比例
函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出點(diǎn)8的坐標(biāo),再根據(jù)點(diǎn)4、8的坐標(biāo)利用待定系數(shù)法即可求出一次函數(shù)解析式;
(2)觀察函數(shù)圖象,根據(jù)兩函數(shù)圖象的上下位置關(guān)系即可得出反比例函數(shù)大于一次函數(shù)的x的取值范圍.
【詳解】
k
解:(1)□點(diǎn)/(-L2)在反比例函數(shù)>=一(x<0)的圖象上,
x
□仁-1x2=-2,
2
□反比例函數(shù)解析式為〉=-
x
□點(diǎn)8在反比例函數(shù)的圖象上,且點(diǎn)B的橫坐標(biāo)為-2,
□點(diǎn)8的坐標(biāo)為(-2,1).
[~k+b=2
將4(-1,2)、B(-2,1)代入歹="+6得<,
\-2k+b=l
k=l
解得:
b=3
口一次函數(shù)的解析式為y=x+3.
n
(2)觀察函數(shù)圖象可知:反比例函數(shù)大于一次函數(shù)的x的取值范圍為無<-2或-1<尤<0.
【點(diǎn)睛】
本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題、待定系數(shù)法求一次函數(shù)解析式,解題的關(guān)鍵是:(1)根據(jù)點(diǎn)的坐標(biāo)
利用待定系數(shù)法求出函數(shù)解析式;(2)根據(jù)函數(shù)圖象的上下位置關(guān)系找出不等式的解集.
23.-
3
【解析】
試題分析:利用樹狀圖,把每種類型畫出來,總共有12種,滿足題意的有8種,計(jì)算概率.
試題解析:
解:將兩班報(bào)名的學(xué)生分別記為甲1、甲2、乙1、乙2,
由樹狀圖知共有12種等可能結(jié)果,其中抽取的2人來自不同班級(jí)的有8種結(jié)果,
QO
所以抽取的2人來自不同班級(jí)的概率為屋
點(diǎn)睛:(1)利用頻率估算法:大量重復(fù)試驗(yàn)中,事件4發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)P就叫
做事件N的概率(有些時(shí)候用計(jì)算出/發(fā)生的所有頻率的平均值作為其概率).
(2)定義法:如果在一次試驗(yàn)中,有"種可能的結(jié)果,并且它們發(fā)生的可能性都相等,考察事件/包含其中的切中
結(jié)果,那么事件/發(fā)生的概率為尸(A)=”.
n
(3)列表法:當(dāng)一次試驗(yàn)要設(shè)計(jì)兩個(gè)因素,可能出現(xiàn)的結(jié)果數(shù)目較多時(shí),為不重不漏地列出所有可能的結(jié)果,通常采
用列表法.其中一個(gè)因素作為行標(biāo),另一個(gè)因素作為列標(biāo).
(4)樹狀圖法:當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,
通常采用樹狀圖法求概率.
24.(1)y=-10x2+1000x-24000;(2)每天銷售120個(gè),定價(jià)為48元或每天銷售80個(gè),定價(jià)為52
元;(3)銷售單價(jià)為50元時(shí),每天的銷售利潤最大,最大利潤是1000元
【解析】
試題分析:(1)利用利潤=單件利潤x件數(shù),列函數(shù)關(guān)系式.(2)利用(1)代入解方程.(3)配方,二次函數(shù)求最值.
15
試題解析:
解:(1)銷售單價(jià)為X元時(shí),每銷售一個(gè)獲利(X-40)元,
每天共銷售[100-10(尤-50)]個(gè),
□v=(x-40)[100-10(x-50)]
=-10x2+1000%-24000,
即每天銷售小工藝品的利潤y(元)和銷售單價(jià)x(元)之間的函數(shù)解析式是尸-10x2+1000x-24000;
(2)根據(jù)題意,得
(x-40)[100-10(%-50)]=960,
解得,x「48,々=52,
當(dāng)%=48時(shí),銷售量為100-10(x-50)=120(個(gè)),
當(dāng)芍=52時(shí),銷售量為100-10(x-50)=80(個(gè)),
答:每天銷售120個(gè),定價(jià)為48元或每天銷售80個(gè),定價(jià)為52元;
(3)Dv=-10x2+1000x-24000=-10(x-50)2+1000,
□銷售單價(jià)為50元時(shí),每天的銷售利潤最大,最大利潤是1000元,
答:銷售單價(jià)為50元時(shí),每天的銷售利潤最大,最大利潤是1000元
25.(1)見解析;(2)口2;□烏;(3)-
143
【分析】
(1)欲證明CF為。。的切線,只要證明即OCLCT即可;
(2)口設(shè)。。的半徑為r.由且NA8C=30。,可得。。=;。8=;廠,又DE=l,AOE=OD+DE,列出
方程即可解決問題;
□作。于修,求出A//、即可解決問題;
(3)設(shè)。。的半徑為想辦法用『表示。H、即可解決問題.
【詳解】
解:(1)連接CO.
為BC的中點(diǎn),且。B=OC,
OD1BC,
■:OB=OC,
:.ZOBC=ZOCB,
又NOBC=NOFC,
:.ZOCB=ZOFC,
OD1BC,
16
:"DCF+NOFC=90°.
:"DCF+/OCB=90。.即OC_LCP,
;.C/為。。的切線.
(2)口設(shè)。。的半徑為r.
?/0。_LBC且ZABC=30°,
OD=-OB=-r,
22
又"=i,S.OE=OD+DE,
r=l+:r,解得:r=2,
2
□作Z>77_LA8于H,在Rt'ODH中,ZDOH=60°,OD=\.
/Ti
DH=—,OH=~,
22
在RtADAH中,???AH=A。+O/f=2,
2
由勾股定理:AD=址.
sE43里
AD2“14
(3)設(shè)。。的半徑為r.
???0、。分別為AB、3C中點(diǎn),
..AC=200,
又??,四邊形ACED是平行四邊形,
/.DF=AC=2OD,
?:/OBC=/OFC,ZCDF=ZODB=90°9
:.AODBsACDF,
OPBD
CD~DF
OPBD
解得:BD=O0D,
BD2OD
.?.在RtAOBD中,OB=r,
OD=—r,BD=-r,
33
OH=-r,DH=-r,
33
4
?.在RtADAH中,vAH=AO+OH=-r
???由勾股定理:AD=&r,
17
sin/BAD=叱=隼=L
AD3V2r3
【點(diǎn)睛】
本題考查切線的判定和性質(zhì)、解直角三角形、平行四邊形的性質(zhì)、銳角三角函數(shù)、相似三角形的判定和性質(zhì)等知識(shí),
解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題.
26.(1)拋物線的解析式為y=-x2+3x+4;(2)DBEP為等腰直角三角形,理由見解析;(3),Q的坐標(biāo)為Q1(:,
535
』或CM],”
【解析】
試題分析:(1)待定系數(shù)法求二次函數(shù)解析式.(2)先求出直線/尸解析式,分別求出BE,"5P的長度,由勾股定理
逆定理口8£尸的形狀.⑶先求出二次函數(shù)的頂點(diǎn),分類討論,若80=00,80000,口加。=45。,過點(diǎn)。/作。眼□。瓦
垂足為跖可求得008。是等腰三角形,可以得到。點(diǎn),若。。尸50,DQ2UBD,可以計(jì)算出。點(diǎn).
試題解析:
解:(1)口拋物線上/、B、C三點(diǎn)坐標(biāo)代入拋物線解析式y(tǒng)=ox2+Zyc+c
a+b+c=0
得,<16〃+4b+c=0,
c=4
ci=-1
解得卜=-3,
c=4
□拋物線的解析式為歹=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 土地權(quán)屬界線協(xié)議書(2篇)
- 防震設(shè)施砼施工班組合同驗(yàn)收
- 軟件銷售公司合伙合同
- 安徽省汽車4S店租房合同
- 智能交通信號(hào)系統(tǒng)線路施工合同
- 2024年蔬菜種子生產(chǎn)與銷售合同范本2篇
- 藝人個(gè)人聲樂培訓(xùn)合同
- 博物館展墻工程協(xié)議
- 飲料廠防水工程承包合同
- 礦山挖掘機(jī)駕駛員聘用協(xié)議
- 自來水維修員年度工作總結(jié)
- ASTMB117-2023年鹽霧試驗(yàn)標(biāo)準(zhǔn)中文
- 國際海上避碰規(guī)則(中英版)課件
- 小學(xué)思政課《愛國主義教育》
- 批量訂購車輛合同范本
- 新能源發(fā)電技術(shù)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- 初中物理-初三物理模擬試卷講評(píng)課教學(xué)課件設(shè)計(jì)
- 道路危險(xiǎn)貨物運(yùn)輸企業(yè)安全生產(chǎn)清單
- 鋼鐵生產(chǎn)企業(yè)溫室氣體核算與報(bào)告案例
- 農(nóng)業(yè)合作社全套報(bào)表(已設(shè)公式)-資產(chǎn)負(fù)債表-盈余及盈余分配表-成員權(quán)益變動(dòng)表-現(xiàn)金流量表
- 深入淺出Oracle EBS之OAF學(xué)習(xí)筆記-Oracle EBS技術(shù)文檔
評(píng)論
0/150
提交評(píng)論