江西省撫州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
江西省撫州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
江西省撫州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
江西省撫州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
江西省撫州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江西省撫州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.二次函數(shù)的圖象如圖所示,則下列各式中錯誤的是()A.a(chǎn)bc>0 B.a(chǎn)+b+c>0 C.a(chǎn)+c>b D.2a+b=02.若△÷,則“△”可能是()A. B. C. D.3.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個4.在“大家跳起來”的鄉(xiāng)村學(xué)校舞蹈比賽中,某校10名學(xué)生參賽成績統(tǒng)計如圖所示.對于這10名學(xué)生的參賽成績,下列說法中錯誤的是()A.眾數(shù)是90 B.中位數(shù)是90 C.平均數(shù)是90 D.極差是155.小明在九年級進(jìn)行的六次數(shù)學(xué)測驗成績?nèi)缦拢▎挝唬悍郑?6、82、91、85、84、85,則這次數(shù)學(xué)測驗成績的眾數(shù)和中位數(shù)分別為()A.91,88 B.85,88 C.85,85 D.85,84.56.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.7.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A.7 B.8 C.9 D.108.從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),取出的數(shù)是3的倍數(shù)的概率是()A. B. C. D.9.在中,,,,則的值是()A. B. C. D.10.有兩把不同的鎖和三把鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,第三把鑰匙不能打開這兩把鎖,任意取出一把鑰匙去開任意的一把鎖,一次打開鎖的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知正方形ABCD的邊長為4,⊙B的半徑為2,點P是⊙B上的一個動點,則PD﹣PC的最大值為_____.12.如圖,等腰△ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為____.13.廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為y=-140x14.拋物線y=x2+2x+m﹣1與x軸有交點,則m的取值范圍是_____.15.計算:﹣|﹣2|+()﹣1=_____.16.如圖,小紅作出了邊長為1的第1個正△A1B1C1,算出了正△A1B1C1的面積,然后分別取△A1B1C1三邊的中點A2,B2,C2,作出了第2個正△A2B2C2,算出了正△A2B2C2的面積,用同樣的方法,作出了第3個正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第8個正△A8B8C8的面積是_____.17.如圖,已知△ABC中,AB=AC=5,BC=8,將△ABC沿射線BC方向平移m個單位得到△DEF,頂點A,B,C分別與D,E,F(xiàn)對應(yīng),若以A,D,E為頂點的三角形是等腰三角形,且AE為腰,則m的值是______.三、解答題(共7小題,滿分69分)18.(10分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發(fā)現(xiàn)如圖1,固定△ABC,使△DEC繞點C旋轉(zhuǎn).當(dāng)點D恰好落在BC邊上時,填空:線段DE與AC的位置關(guān)系是;②設(shè)△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數(shù)量關(guān)系是.猜想論證當(dāng)△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S1的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應(yīng)的BF的長19.(5分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點,P是邊AC上一動點,BP與CD相交于點E.(1)如果BC=6,AC=8,且P為AC的中點,求線段BE的長;(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.20.(8分)為紀(jì)念紅軍長征勝利81周年,我市某中學(xué)團委擬組織學(xué)生開展唱紅歌比賽活動,為此,該校隨即抽取部分學(xué)生就“你是否喜歡紅歌”進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果統(tǒng)計后繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.態(tài)度非常喜歡喜歡一般不知道頻數(shù)90b3010頻率a0.350.20請你根據(jù)統(tǒng)計圖、表,提供的信息解答下列問題:(1)該校這次隨即抽取了名學(xué)生參加問卷調(diào)查:(2)確定統(tǒng)計表中a、b的值:a=,b=;(3)該校共有2000名學(xué)生,估計全校態(tài)度為“非常喜歡”的學(xué)生人數(shù).21.(10分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標(biāo),若不存在,說明理由.22.(10分)如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.(1)求證:AH是⊙O的切線;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求證:CD=DH.23.(12分)如圖,在平面直角坐標(biāo)系中,直線y1=2x+b與坐標(biāo)軸交于A、B兩點,與雙曲線(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,點B的坐標(biāo)為(0,﹣2).(1)求直線y1=2x+b及雙曲線(x>0)的表達(dá)式;(2)當(dāng)x>0時,直接寫出不等式的解集;(3)直線x=3交直線y1=2x+b于點E,交雙曲線(x>0)于點F,求△CEF的面積.24.(14分)如圖,∠A=∠B=30°(1)尺規(guī)作圖:過點C作CD⊥AC交AB于點D;(只要求作出圖形,保留痕跡,不要求寫作法)(2)在(1)的條件下,求證:BC2=BD?AB.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】解:由圖象可知拋物線開口向上,∴,∵對稱軸為,∴,∴,∴,故D正確,又∵拋物線與y軸交于y軸的負(fù)半軸,∴,∴,故A正確;當(dāng)x=1時,,即,故B錯誤;當(dāng)x=-1時,即,∴,故C正確,故答案為:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,解題的關(guān)鍵是熟練掌握二次函數(shù)各系數(shù)的意義以及二次函數(shù)的圖象與性質(zhì).2、A【解析】

直接利用分式的乘除運算法則計算得出答案.【詳解】。故選:A.【點睛】考查了分式的乘除運算,正確分解因式再化簡是解題關(guān)鍵.3、C【解析】

試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結(jié)論正確的是①②③④共4個.故選C.【點睛】考點:1、矩形的性質(zhì);2、全等三角形的判定與性質(zhì);3、角平分線的性質(zhì);4、等腰三角形的判定與性質(zhì)4、C【解析】

由統(tǒng)計圖中提供的數(shù)據(jù),根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、極差的定義分別列出算式,求出答案:【詳解】解:∵90出現(xiàn)了5次,出現(xiàn)的次數(shù)最多,∴眾數(shù)是90;∵共有10個數(shù),∴中位數(shù)是第5、6個數(shù)的平均數(shù),∴中位數(shù)是(90+90)÷2=90;∵平均數(shù)是(80×1+85×2+90×5+95×2)÷10=89;極差是:95﹣80=1.∴錯誤的是C.故選C.5、D【解析】試題分析:根據(jù)眾數(shù)的定義:出現(xiàn)次數(shù)最多的數(shù),中位數(shù)定義:把所有的數(shù)從小到大排列,位置處于中間的數(shù),即可得到答案.眾數(shù)出現(xiàn)次數(shù)最多的數(shù),85出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)是:85,把所有的數(shù)從小到大排列:76,82,84,85,85,91,位置處于中間的數(shù)是:84,85,因此中位數(shù)是:(85+84)÷2=84.5,故選D.考點:眾數(shù),中位數(shù)點評:此題主要考查了眾數(shù)與中位數(shù)的意義,關(guān)鍵是正確把握兩種數(shù)的定義,即可解決問題6、B【解析】

陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【詳解】由旋轉(zhuǎn)可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故答案選:B.【點睛】本題考查的知識點是旋轉(zhuǎn)的性質(zhì)及扇形面積的計算,解題的關(guān)鍵是熟練的掌握旋轉(zhuǎn)的性質(zhì)及扇形面積的計算.7、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關(guān)鍵是對三視圖靈活運用,體現(xiàn)了對空間想象能力的考查.8、B【解析】考點:概率公式.專題:計算題.分析:根據(jù)概率的求法,找準(zhǔn)兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數(shù)中隨機取出一個數(shù),共有6種情況,取出的數(shù)是3的倍數(shù)的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)="m"/n.9、D【解析】

首先根據(jù)勾股定理求得AC的長,然后利用正弦函數(shù)的定義即可求解.【詳解】∵∠C=90°,BC=1,AB=4,

∴,∴,故選:D.【點睛】本題考查了三角函數(shù)的定義,求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,轉(zhuǎn)化成直角三角形的邊長的比.10、B【解析】解:將兩把不同的鎖分別用A與B表示,三把鑰匙分別用A,B與C表示,且A鑰匙能打開A鎖,B鑰匙能打開B鎖,畫樹狀圖得:∵共有6種等可能的結(jié)果,一次打開鎖的有2種情況,∴一次打開鎖的概率為:.故選B.點睛:本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】分析:由PD?PC=PD?PG≤DG,當(dāng)點P在DG的延長線上時,PD?PC的值最大,最大值為DG=1.詳解:在BC上取一點G,使得BG=1,如圖,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,當(dāng)點P在DG的延長線上時,PD?PC的值最大,最大值為DG==1.故答案為1點睛:本題考查圓綜合題、正方形的性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建相似三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,把問題轉(zhuǎn)化為兩點之間線段最短解決,題目比較難,屬于中考壓軸題.12、3【解析】試題分析:因為等腰△ABC的周長為33,底邊BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周長為=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考點:3.等腰三角形的性質(zhì);3.垂直平分線的性質(zhì).13、85【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標(biāo)差的絕對值.故有-1即x2=80,x1所以兩盞警示燈之間的水平距離為:|14、m≤1.【解析】

由拋物線與x軸有交點可得出方程x1+1x+m-1=0有解,利用根的判別式△≥0,即可得出關(guān)于m的一元一次不等式,解之即可得出結(jié)論.【詳解】∴關(guān)于x的一元二次方程x1+1x+m?1=0有解,∴△=11?4(m?1)=8?4m≥0,解得:m≤1.故答案為:m≤1.【點睛】本題考查的知識點是拋物線與坐標(biāo)軸的交點,解題的關(guān)鍵是熟練的掌握拋物線與坐標(biāo)軸的交點.15、﹣1【解析】

根據(jù)立方根、絕對值及負(fù)整數(shù)指數(shù)冪等知識點解答即可.【詳解】原式=-2-2+3=-1【點睛】本題考查了實數(shù)的混合運算,解題的關(guān)鍵是掌握運算法則及運算順序.16、【解析】

根據(jù)相似三角形的性質(zhì),先求出正△A2B2C2,正△A3B3C3的面積,依此類推△AnBnCn的面積是,從而求出第8個正△A8B8C8的面積.【詳解】正△A1B1C1的面積是,而△A2B2C2與△A1B1C1相似,并且相似比是1:2,則面積的比是,則正△A2B2C2的面積是×;因而正△A3B3C3與正△A2B2C2的面積的比也是,面積是×()2;依此類推△AnBnCn與△An-1Bn-1Cn-1的面積的比是,第n個三角形的面積是()n-1.所以第8個正△A8B8C8的面積是×()7=.故答案為.【點睛】本題考查了相似三角形的性質(zhì)及應(yīng)用,相似三角形面積的比等于相似比的平方,找出規(guī)律是關(guān)鍵.17、或5或1.【解析】

根據(jù)以點A,D,E為頂點的三角形是等腰三角形分類討論即可.【詳解】解:如圖(1)當(dāng)在△ADE中,DE=5,當(dāng)AD=DE=5時為等腰三角形,此時m=5.(2)又AC=5,當(dāng)平移m個單位使得E、C點重合,此時AE=ED=5,平移的長度m=BC=1,(3)可以AE、AD為腰使ADE為等腰三角形,設(shè)平移了m個單位:則AN=3,AC=,AD=m,得:,得m=,綜上所述:m為或5或1,所以答案:或5或1.【點睛】本題主要考查等腰三角形的性質(zhì),注意分類討論的完整性.三、解答題(共7小題,滿分69分)18、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】

(1)①由旋轉(zhuǎn)可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,

∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S1;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時S△DCF1=S△BDE;

過點D作DF1⊥BD,

∵∠ABC=20°,F(xiàn)1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等邊三角形,

∴DF1=DF1,過點D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,點D是角平分線上一點,

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-150°-20°=150°,

∴∠CDF1=∠CDF1,

∵在△CDF1和△CDF1中,,

∴△CDF1≌△CDF1(SAS),

∴點F1也是所求的點,

∵∠ABC=20°,點D是角平分線上一點,DE∥AB,

∴∠DBC=∠BDE=∠ABD=×20°=30°,

又∵BD=3,

∴BE=×3÷cos30°=3,

∴BF1=3,BF1=BF1+F1F1=3+3=2,

故BF的長為3或2.19、(1)(2)(3).【解析】

(1)由勾股定理求出BP的長,D是邊AB的中點,P為AC的中點,所以點E是△ABC的重心,然后求得BE的長.(2)過點B作BF∥CA交CD的延長線于點F,所以,然后可求得EF=8,所以,所以,因為PD⊥AB,D是邊AB的中點,在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=,∵D是邊AB的中點,P為AC的中點,∴點E是△ABC的重心,∴,(2)過點B作BF∥CA交CD的延長線于點F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,則CD=5,∴EF=8,∴,∴,∴,設(shè)CP=k,則PA=3k,∵PD⊥AB,D是邊AB的中點,∴PA=PB=3k,∴,∴,∵,∴,(3)∵∠ACB=90°,D是邊AB的中點,∴,∵,∴,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,△DPE∽△DCP,∴,∵DE=3,DC=5,∴.【點睛】本題是一道三角形的綜合性題目,熟練掌握三角形的重心,三角形相似的判定和性質(zhì)以及三角函數(shù)是解題的關(guān)鍵.20、(1)200,;(2)a=0.45,b=70;(3)900名.【解析】

(1)根據(jù)“一般”和“不知道”的頻數(shù)和頻率求總數(shù)即可(2)根據(jù)(1)的總數(shù),結(jié)合頻數(shù),頻率的大小可得到結(jié)果(3)根據(jù)“非常喜歡”學(xué)生的比值就可以計算出2000名學(xué)生中的人數(shù).【詳解】解:(1)“一般”頻數(shù)30,“不知道”頻數(shù)10,兩者頻率0.20,根據(jù)頻數(shù)的計算公式可得,總數(shù)=頻數(shù)/頻率=(名);(2)“非常喜歡”頻數(shù)90,a=;(3).故答案為(1)200,;(2)a=0.45,b=70;(3)900名.【點睛】此題重點考察學(xué)生對頻數(shù)和頻率的應(yīng)用,掌握頻率的計算公式是解題的關(guān)鍵.21、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點坐標(biāo)為(1,2)或(4,﹣25).【解析】

(1)設(shè)交點式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計算出AC=,BC=,接著利用面積法計算出AE=,然后根據(jù)三角函數(shù)的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計算出BH=,CH=,再根據(jù)兩點間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數(shù)聯(lián)立成方程組,解方程組即可.【詳解】(1)設(shè)拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當(dāng)x=0時,y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.當(dāng)n=﹣時,m=2n+=,此時H(,﹣),易得直線CD的解析式為y=﹣7x+3,解方程組得:或,此時D點坐標(biāo)為(4,﹣25);當(dāng)n=時,m=2n+=,此時H(),易得直線CD的解析式為y=﹣x+3,解方程組得:或,此時D點坐標(biāo)為(1,2).綜上所述:D點坐標(biāo)為(1,2)或(4,﹣25).【點睛】本題是二次函數(shù)綜合題.熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)和相似三角形的判定的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式,把求兩函數(shù)交點問題轉(zhuǎn)化為解方程組的問題;理解坐標(biāo)與圖形性質(zhì);會運用分類討論的思想解決數(shù)學(xué)問題.22、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)連接OA,證明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位線,根據(jù)三角形中位線定理、切線的判定定理證明;(2)利用正弦的定義計算;(3)證明△CDF∽△AOF,根據(jù)相似三角形的性質(zhì)得到CD=CE,根據(jù)等腰三角形的性質(zhì)證明.【詳解】(1)證明:連接OA,由圓周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直徑,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切線;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=1.在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)證明:由(2)知,OA是△BDE的中位線,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴=,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論