安徽省含山縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第1頁(yè)
安徽省含山縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第2頁(yè)
安徽省含山縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第3頁(yè)
安徽省含山縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第4頁(yè)
安徽省含山縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省含山縣2024屆中考數(shù)學(xué)考前最后一卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B,頂點(diǎn)為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.122.在平面直角坐標(biāo)系中,點(diǎn)P(m﹣3,2﹣m)不可能在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限3.已知一組數(shù)據(jù)a,b,c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a﹣2,b﹣2,c﹣2的平均數(shù)和方差分別是.()A.3,2 B.3,4 C.5,2 D.5,44.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點(diǎn)C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項(xiàng)是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD5.某反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-2,3),則此函數(shù)圖象也經(jīng)過(guò)()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)6.如圖,是半圓圓的直徑,的兩邊分別交半圓于,則為的中點(diǎn),已知,則()A. B. C. D.7.某校舉行“漢字聽(tīng)寫(xiě)比賽”,5個(gè)班級(jí)代表隊(duì)的正確答題數(shù)如圖.這5個(gè)正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,158.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà)弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是()A. B. C. D.9.某校有35名同學(xué)參加眉山市的三蘇文化知識(shí)競(jìng)賽,預(yù)賽分?jǐn)?shù)各不相同,取前18名同學(xué)參加決賽.其中一名同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,只需要知道這35名同學(xué)分?jǐn)?shù)的(

).A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差10.如圖,A,B是半徑為1的⊙O上兩點(diǎn),且OA⊥OB.點(diǎn)P從A出發(fā),在⊙O上以每秒一個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),回到點(diǎn)A運(yùn)動(dòng)結(jié)束.設(shè)運(yùn)動(dòng)時(shí)間為x,弦BP的長(zhǎng)度為y,那么下面圖象中可能表示y與x的函數(shù)關(guān)系的是A.① B.④ C.②或④ D.①或③二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.直線y=x與雙曲線y=在第一象限的交點(diǎn)為(a,1),則k=_____.12.邊長(zhǎng)為6的正六邊形外接圓半徑是_____.13.如圖所示,在長(zhǎng)為10m、寬為8m的長(zhǎng)方形空地上,沿平行于各邊的方向分割出三個(gè)全等的小長(zhǎng)方形花圃則其中一個(gè)小長(zhǎng)方形花圃的周長(zhǎng)是______m.14.如圖,在邊長(zhǎng)為4的菱形ABCD中,∠A=60°,M是AD邊的中點(diǎn),點(diǎn)N是AB邊上一動(dòng)點(diǎn),將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長(zhǎng)度的最小值是______.15.化簡(jiǎn)的結(jié)果等于__.16.長(zhǎng)城的總長(zhǎng)大約為6700000m,將數(shù)6700000用科學(xué)記數(shù)法表示為_(kāi)_____三、解答題(共8題,共72分)17.(8分)某商場(chǎng)同時(shí)購(gòu)進(jìn)甲、乙兩種商品共200件,其進(jìn)價(jià)和售價(jià)如表,商品名稱甲乙進(jìn)價(jià)(元/件)80100售價(jià)(元/件)160240設(shè)其中甲種商品購(gòu)進(jìn)x件,該商場(chǎng)售完這200件商品的總利潤(rùn)為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計(jì)劃最多投入18000元用于購(gòu)買(mǎi)這兩種商品,則至少要購(gòu)進(jìn)多少件甲商品?若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是多少元?(3)在(2)的基礎(chǔ)上,實(shí)際進(jìn)貨時(shí),生產(chǎn)廠家對(duì)甲種商品的出廠價(jià)下調(diào)a元(50<a<70)出售,且限定商場(chǎng)最多購(gòu)進(jìn)120件,若商場(chǎng)保持同種商品的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中的條件,設(shè)計(jì)出使該商場(chǎng)獲得最大利潤(rùn)的進(jìn)貨方案.18.(8分)(1)問(wèn)題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立.說(shuō)明理由.(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:如圖3,在△ABD中,AB=6,AD=BD=1.點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)DC的長(zhǎng)與△ABD底邊上的高相等時(shí),求t的值.19.(8分)全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問(wèn)題:甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是;乙家庭沒(méi)有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.20.(8分)如圖,在中,以為直徑的⊙交于點(diǎn),過(guò)點(diǎn)作于點(diǎn),且.()判斷與⊙的位置關(guān)系并說(shuō)明理由;()若,,求⊙的半徑.21.(8分)如圖,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分線交AE于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)B,交BC于另一點(diǎn)F.(1)求證:CD與⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.22.(10分)北京時(shí)間2019年3月10日0時(shí)28分,我國(guó)在西昌衛(wèi)星發(fā)射中心用長(zhǎng)征三號(hào)乙運(yùn)載火箭,成功將中星衛(wèi)星發(fā)射升空,衛(wèi)星進(jìn)入預(yù)定軌道.如圖,火星從地面處發(fā)射,當(dāng)火箭達(dá)到點(diǎn)時(shí),從位于地面雷達(dá)站處測(cè)得的距離是,仰角為;1秒后火箭到達(dá)點(diǎn),測(cè)得的仰角為.(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求發(fā)射臺(tái)與雷達(dá)站之間的距離;(Ⅱ)求這枚火箭從到的平均速度是多少(結(jié)果精確到0.01)?23.(12分)解不等式組并在數(shù)軸上表示解集.24.計(jì)算:(1-n)0-|3-2|+(-)-1+4cos30°.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

設(shè)拋物線與x軸的兩交點(diǎn)A、B坐標(biāo)分別為(x1,0),(x2,0),利用二次函數(shù)的性質(zhì)得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據(jù)等腰直角三角形的性質(zhì)得到||=?,然后進(jìn)行化簡(jiǎn)可得到b2-1ac的值.【詳解】設(shè)拋物線與x軸的兩交點(diǎn)A、B坐標(biāo)分別為(x1,0),(x2,0),頂點(diǎn)P的坐標(biāo)為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問(wèn)題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì)和等腰直角三角形的性質(zhì).2、A【解析】

分點(diǎn)P的橫坐標(biāo)是正數(shù)和負(fù)數(shù)兩種情況討論求解.【詳解】①m-3>0,即m>3時(shí),2-m<0,所以,點(diǎn)P(m-3,2-m)在第四象限;②m-3<0,即m<3時(shí),2-m有可能大于0,也有可能小于0,點(diǎn)P(m-3,2-m)可以在第二或三象限,綜上所述,點(diǎn)P不可能在第一象限.故選A.【點(diǎn)睛】本題考查了各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)特征,記住各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)是解決的關(guān)鍵,四個(gè)象限的符號(hào)特點(diǎn)分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、B【解析】試題分析:平均數(shù)為(a?2+b?2+c?2)=(3×5-6)=3;原來(lái)的方差:;新的方差:,故選B.考點(diǎn):平均數(shù);方差.4、D【解析】試題分析:對(duì)于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據(jù)AAS判定定理可以判定△POC≌△POD;對(duì)于BOC=OD,根據(jù)SAS判定定理可以判定△POC≌△POD;對(duì)于C,∠OPC=∠OPD,根據(jù)ASA判定定理可以判定△POC≌△POD;,對(duì)于D,PC=PD,無(wú)法判定△POC≌△POD,故選D.考點(diǎn):角平分線的性質(zhì);全等三角形的判定.5、A【解析】

設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征分別進(jìn)行判斷.【詳解】設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),∵反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(diǎn)(2,-3)在反比例函數(shù)y=-的圖象上.故選A.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.6、C【解析】

連接AE,只要證明△ABC是等腰三角形,AC=AB即可解決問(wèn)題.【詳解】解:如圖,連接AE,

∵AB是直徑,

∴∠AEB=90°,即AE⊥BC,

∵EB=EC,

∴AB=AC,

∴∠C=∠B,

∵∠BAC=50°,

∴∠C=(180°-50°)=65°,

故選:C.【點(diǎn)睛】本題考查了圓周角定理、等腰三角形的判定和性質(zhì)、線段的垂直平分線的性質(zhì)定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.7、D【解析】

將五個(gè)答題數(shù),從小打到排列,5個(gè)數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個(gè)答題數(shù)排序?yàn)椋?0,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點(diǎn)睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.8、B【解析】試題解析:如圖所示:設(shè)BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=;故選B.【點(diǎn)睛】本題考查了解直角三角形、含30°角的直角三角形的性質(zhì)、等腰三角形的性質(zhì)、三角函數(shù)等,通過(guò)作輔助線求出AM是解決問(wèn)題的關(guān)鍵.9、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可.詳解:35個(gè)不同的成績(jī)按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個(gè)數(shù),故只要知道自己的成績(jī)和中位數(shù)就可以知道是否進(jìn)入決賽了.故選B.點(diǎn)睛:本題考查了統(tǒng)計(jì)量的選擇,以及中位數(shù)意義,解題的關(guān)鍵是正確的求出這組數(shù)據(jù)的中位數(shù)10、D【解析】

分兩種情形討論當(dāng)點(diǎn)P順時(shí)針旋轉(zhuǎn)時(shí),圖象是③,當(dāng)點(diǎn)P逆時(shí)針旋轉(zhuǎn)時(shí),圖象是①,由此即可解決問(wèn)題.【詳解】解:當(dāng)點(diǎn)P順時(shí)針旋轉(zhuǎn)時(shí),圖象是③,當(dāng)點(diǎn)P逆時(shí)針旋轉(zhuǎn)時(shí),圖象是①.故選D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】分析:首先根據(jù)正比例函數(shù)得出a的值,然后將交點(diǎn)坐標(biāo)代入反比例函數(shù)解析式得出k的值.詳解:將(a,1)代入正比例函數(shù)可得:a=1,∴交點(diǎn)坐標(biāo)為(1,1),∴k=1×1=1.點(diǎn)睛:本題主要考查的是利用待定系數(shù)法求函數(shù)解析式,屬于基礎(chǔ)題型.根據(jù)正比例函數(shù)得出交點(diǎn)坐標(biāo)是解題的關(guān)鍵.12、6【解析】

根據(jù)正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,∴邊長(zhǎng)為6的正六邊形外接圓半徑是6,故答案為:6.【點(diǎn)睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形是解題的關(guān)鍵.13、12【解析】

由圖形可看出:小矩形的2個(gè)長(zhǎng)+一個(gè)寬=10m,小矩形的2個(gè)寬+一個(gè)長(zhǎng)=8m,設(shè)出長(zhǎng)和寬,列出方程組解之即可求得答案.【詳解】解:設(shè)小長(zhǎng)方形花圃的長(zhǎng)為xm,寬為ym,由題意得,解得,所以其中一個(gè)小長(zhǎng)方形花圃的周長(zhǎng)是.【點(diǎn)睛】此題主要考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是:數(shù)形結(jié)合,弄懂題意,找出等量關(guān)系,列出方程組.本題也可以讓列出的兩個(gè)方程相加,得3(x+y)=18,于是x+y=6,所以周長(zhǎng)即為2(x+y)=12,問(wèn)題得解.這種思路用了整體的數(shù)學(xué)思想,顯得較為簡(jiǎn)捷.14、【解析】

解:如圖所示:∵M(jìn)A′是定值,A′C長(zhǎng)度取最小值時(shí),即A′在MC上時(shí),過(guò)點(diǎn)M作MF⊥DC于點(diǎn)F,∵在邊長(zhǎng)為2的菱形ABCD中,∠A=60°,M為AD中點(diǎn),∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點(diǎn)評(píng)】此題主要考查了菱形的性質(zhì)以及銳角三角函數(shù)關(guān)系等知識(shí),得出A′點(diǎn)位置是解題關(guān)鍵.15、.【解析】

先通分變?yōu)橥帜阜质剑缓蟾鶕?jù)分式的減法法則計(jì)算即可.【詳解】解:原式.故答案為:.【點(diǎn)睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關(guān)鍵.16、6.7×106【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:6700000用科學(xué)記數(shù)法表示應(yīng)記為6.7×106,故選6.7×106.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為ax10n的形式,其中1≤|a|<10,n為整數(shù);表示時(shí)關(guān)鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1)y=﹣60x+28000;(2)若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是22000元;(3)商場(chǎng)應(yīng)購(gòu)進(jìn)甲商品120件,乙商品80件,獲利最大【解析】分析:(1)根據(jù)總利潤(rùn)=(甲的售價(jià)-甲的進(jìn)價(jià))×購(gòu)進(jìn)甲的數(shù)量+(乙的售價(jià)-乙的進(jìn)價(jià))×購(gòu)進(jìn)乙的數(shù)量代入列關(guān)系式,并化簡(jiǎn)即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問(wèn)題;(3)把50<a<70分三種情況討論:一次項(xiàng)x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結(jié)論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關(guān)系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購(gòu)進(jìn)100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當(dāng)x=100時(shí),y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場(chǎng)可獲得的最大利潤(rùn)是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當(dāng)50<a<60時(shí),a﹣60<0,y隨x的增大而減小,∴當(dāng)x=100時(shí),y有最大利潤(rùn),即商場(chǎng)應(yīng)購(gòu)進(jìn)甲商品100件,乙商品100件,獲利最大,②當(dāng)a=60時(shí),a﹣60=0,y=28000,即商場(chǎng)應(yīng)購(gòu)進(jìn)甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時(shí),獲利最大,③當(dāng)60<a<70時(shí),a﹣60>0,y隨x的增大而增大,∴當(dāng)x=120時(shí),y有最大利潤(rùn),即商場(chǎng)應(yīng)購(gòu)進(jìn)甲商品120件,乙商品80件,獲利最大.點(diǎn)睛:本題是一次函數(shù)和一元一次不等式的綜合應(yīng)用,屬于銷(xiāo)售利潤(rùn)問(wèn)題,在此類題中,要明確售價(jià)、進(jìn)價(jià)、利潤(rùn)的關(guān)系式:?jiǎn)渭麧?rùn)=售價(jià)-進(jìn)價(jià),總利潤(rùn)=單個(gè)利潤(rùn)×數(shù)量;認(rèn)真讀題,弄清題中的每一個(gè)條件;對(duì)于最值問(wèn)題,可利用一次函數(shù)的增減性來(lái)解決:形如y=kx+b中,當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減?。?8、(2)證明見(jiàn)解析;(2)結(jié)論成立,理由見(jiàn)解析;(3)2秒或2秒.【解析】

(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;(3)過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)結(jié)論ADBC=APBP仍成立;證明:如圖2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下圖,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的經(jīng)驗(yàn)得AD?BC=AP?BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值為2秒或2秒.【點(diǎn)睛】本題考查圓的綜合題.19、(1);(2)【解析】

(1)根據(jù)可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后確定至少有一個(gè)女孩的可能性,然后可求概率.【詳解】解:(1)(1)第二個(gè)孩子是女孩的概率=;故答案為;(2)畫(huà)樹(shù)狀圖為:

共有4種等可能的結(jié)果數(shù),其中至少有一個(gè)孩子是女孩的結(jié)果數(shù)為3,

所以至少有一個(gè)孩子是女孩的概率=.【點(diǎn)睛】本題考查了列表法與樹(shù)狀圖法:利用列表法或樹(shù)狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.20、(1)DE與⊙O相切,詳見(jiàn)解析;(2)5【解析】

(1)根據(jù)直徑所對(duì)的圓心角是直角,再結(jié)合所給條件∠BDE=∠A,可以推導(dǎo)出∠ODE=90°,說(shuō)明相切的位置關(guān)系。(2)根據(jù)直徑所對(duì)的圓心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE=90°可以推導(dǎo)出∠DAB=∠C,可判定△ABC是等腰三角形,再根據(jù)BD⊥AC可知D是AC的中點(diǎn),從而得出AD的長(zhǎng)度,再在Rt△ADB中計(jì)算出直徑AB的長(zhǎng),從而算出半徑。【詳解】(1)連接OD,在⊙O中,因?yàn)锳B是直徑,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因?yàn)椤螧DE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD過(guò)圓心,D是圓上一點(diǎn),故DE是⊙O切線上的一段,因此位置關(guān)系是直線DE與⊙O相切;(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,則∠BDE+∠ABD=90°,因?yàn)镈E⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,則∠ABD=∠DBE,又因?yàn)锽D⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底邊BC上的高,則D是AC的中點(diǎn),故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB為直徑,所以⊙O的半徑是5.【點(diǎn)睛】本題主要考查圓中的計(jì)算問(wèn)題和與圓有關(guān)的位置關(guān)系,解本題的要點(diǎn)在于求出AD的長(zhǎng),從而求出AB的長(zhǎng).21、(1)證明見(jiàn)解析;(2)【解析】試題分析:(1)過(guò)點(diǎn)O作OG⊥DC,垂足為G.先證明∠OAD=90°,從而得到∠OAD=∠OGD=90°,然后利用AAS可證明△AD

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論