湖北省仙桃榮懷學校2023-2024學年數(shù)學九上期末檢測模擬試題含解析_第1頁
湖北省仙桃榮懷學校2023-2024學年數(shù)學九上期末檢測模擬試題含解析_第2頁
湖北省仙桃榮懷學校2023-2024學年數(shù)學九上期末檢測模擬試題含解析_第3頁
湖北省仙桃榮懷學校2023-2024學年數(shù)學九上期末檢測模擬試題含解析_第4頁
湖北省仙桃榮懷學校2023-2024學年數(shù)學九上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖北省仙桃榮懷學校2023-2024學年數(shù)學九上期末檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在四邊形ABCD中,ADBC,DE⊥BC,垂足為點E,連接AC交DE于點F,點G為AF的中點,∠ACD=2∠ACB,若DG=3,EC=1,則DE的長為()A.2 B. C.2 D.2.下列方程中,是一元二次方程的是()A. B.C. D.3.已知拋物線經(jīng)過點,,若,是關于的一元二次方程的兩個根,且,,則下列結論一定正確的是()A. B. C. D.4.若將拋物線y=x2平移,得到新拋物線,則下列平移方法中,正確的是()A.向左平移3個單位 B.向右平移3個單位C.向上平移3個單位 D.向下平移3個單位5.我國民間,流傳著許多含有吉祥意義的文字圖案,表示對幸福生活的向往,良辰佳節(jié)的祝賀.比如下列圖案分別表示“?!?、“祿”、“壽”、“喜”,其中是中心對稱圖形的是()A.①③ B.①④ C.②③ D.②④6.已知⊙O的半徑為3cm,P到圓心O的距離為4cm,則點P在⊙O()A.內(nèi)部 B.外部 C.圓上 D.不能確定7.某校九年級共有1、2、3、4四個班,現(xiàn)從這四個班中隨機抽取兩個班進行一場籃球比賽,則恰好抽到1班和2班的概率是()A.18 B.16 C.38.反比例函數(shù)的圖象經(jīng)過點,若點在反比例函數(shù)的圖象上,則n等于()A.-4 B.-9 C.4 D.99.若關于的方程的一個根是,則的值是()A. B. C. D.10.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.二、填空題(每小題3分,共24分)11.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為12m,那么這棟建筑物的高度為_____m.12.如圖,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分別為AC、AD上兩動點,連接CF、EF,則CF+EF的最小值為_____.13.拋物線的頂點坐標是______.14.某商場在“元旦”期間推出購物摸獎活動,摸獎箱內(nèi)有除顏色以外完全相同的紅色、白色乒乓球各兩個.顧客摸獎時,一次摸出兩個球,如果兩個球的顏色相同就得獎,顏色不同則不得獎.那么顧客摸獎一次,得獎的概率是_______.15.如圖,直線,等腰直角三角形的三個頂點分別在,,上,90°,交于點,已知與的距離為2,與的距離為3,則的長為________.16.如圖示,半圓的直徑,,是半圓上的三等分點,點是的中點,則陰影部分面積等于______.17.關于x的一元二次方程的一個根為1,則方程的另一根為______.18.將拋物線向右平移2個單位長度,再向上平移1個單位長度,所得拋物線的函數(shù)表達式是_____.三、解答題(共66分)19.(10分)如圖,是的直徑,是的弦,延長到點,使,連結,過點作,垂足為.(1)求證:;(2)求證:為的切線.20.(6分)如圖所示,已知在平面直角坐標系中,拋物線(其中、為常數(shù),且)與軸交于點,它的坐標是,與軸交于點,此拋物線頂點到軸的距離為4.(1)求拋物線的表達式;(2)求的正切值;(3)如果點是拋物線上的一點,且,試直接寫出點的坐標.21.(6分)如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,建立平面直角坐標系后,的頂點均在格點上,點的坐標為.(1)畫出關于軸對稱的;寫出頂點的坐標(,),(,).(2)畫出將繞原點按順時針旋轉(zhuǎn)所得的;寫出頂點的坐標(,),(,),(,).(3)與成中心對稱圖形嗎?若成中心對稱圖形,寫出對稱中心的坐標.22.(8分)有一個直徑為1m的圓形鐵皮,要從中剪出一個最大的圓心角為90°的扇形ABC,如圖所示.(1)求被剪掉陰影部分的面積:(2)用所留的扇形鐵皮圍成一個圓錐,該圓錐的底面圓的半徑是多少?23.(8分)已知,如圖,斜坡的坡度為,斜坡的水平長度為米.在坡頂處的同一水平面上有一座信號塔,在斜坡底處測得該塔的塔頂?shù)难鼋菫椋谄马椞帨y得該塔的塔頂?shù)难鼋菫?求:坡頂?shù)降孛娴木嚯x;信號塔的高度.(,結果精確到米)24.(8分)中學生騎電動車上學的現(xiàn)象越來越受到社會的關注.為此某媒體記者小李隨機調(diào)查了城區(qū)若干名中學生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:反對;C:贊成)并將調(diào)查結果繪制成圖①和圖②的統(tǒng)計圖(不完整)請根據(jù)圖中提供的信息,解答下列問題:(1)此次抽樣調(diào)查中.共調(diào)查了______名中學生家長;(2)將圖形①、②補充完整;(3)根據(jù)抽樣調(diào)查結果.請你估計我市城區(qū)80000名中學生家長中有多少名家長持反對態(tài)度?25.(10分)如圖,反比例函數(shù)的圖象經(jīng)過點,直線與雙曲線交于另一點,作軸于點,軸于點,連接.(1)求的值;(2)若,求直線的解析式;(3)若,其它條件不變,直接寫出與的位置關系.26.(10分)如圖,為的直徑,為上的兩條弦,且于點,,交延長線于點,.(1)求的度數(shù);(2)求陰影部分的面積

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)直角三角形斜邊上中線的性質(zhì)可得DG=AG,根據(jù)等腰三角形的性質(zhì),得到,由三角形外角的性質(zhì),可得,再根據(jù)平行線的性質(zhì)和等量關系可得,根據(jù)等腰三角形的性質(zhì)得到CD=DG,最后由勾股定理解題即可.【詳解】為AF的中點,即DG為斜邊AF的中線,設在中,根據(jù)勾股定理得,故選:C.【點睛】本題考查勾股定理、直角三角形斜邊上的中線、等腰三角形的性質(zhì)、平行線的性質(zhì)等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.2、C【分析】根據(jù)一元二次方程的定義求解,一元二次方程必須滿足兩個條件:①未知數(shù)的最高次數(shù)是2;②二次項系數(shù)不為1.由這兩個條件得到相應的關系式,再求解即可.【詳解】A、是分式方程,故A不符合題意;

B、是二元二次方程,故B不符合題意;

C、是一元二次方程,故C符合題意;

D、是二元二次方程,故D不符合題意;

故選:C.【點睛】本題利用了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是(且a≠1).特別要注意a≠1的條件,這是在做題過程中容易忽視的知識點.3、C【分析】根據(jù)a的符號分類討論,分別畫出對應的圖象,然后通過圖象判斷m和n的符號,找到這兩種情況下都正確的結論即可.【詳解】解:當a>0時,如下圖所示,由圖可知:當<<時,y<0;當<或>時,y>0∵<0<∴m>0,n<0,此時:不能確定其符號,故A不一定成立;,故B錯誤;,故C正確;,故D錯誤.當a<0時,如下圖所示,由圖可知:當<<時,y>0;當<或>時,y<0∵<0<∴m<0,n>0,此時:不能確定其符號,故A不一定成立;,故B正確;,故C正確;,故D錯誤.綜上所述:結論一定正確的是C.故選C.【點睛】此題考查的是二次函數(shù)的圖象及性質(zhì),掌握二次函數(shù)的圖象及性質(zhì)與二次項系數(shù)的關系、分類討論的數(shù)學思想和數(shù)形結合的數(shù)學思想是解決此題的關鍵.4、A【解析】先確定拋物線y=x1的頂點坐標為(0,0),拋物線y=(x+3)1的頂點坐標為(-3,0),然后利用頂點的平移情況確定拋物線的平移情況.【詳解】解:拋物線y=x1的頂點坐標為(0,0),拋物線y=(x+3)1的頂點坐標為(-3,0),

因為點(0,0)向左平移3個單位長度后得到(-3,0),

所以把拋物線y=x1向左平移3個單位得到拋物線y=(x+3)1.

故選:A.【點睛】本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.5、D【分析】根據(jù)中心對稱圖形的定義,結合選項所給圖形進行判斷即可.【詳解】解:①不是中心對稱圖形,故本選項不合題意;②是中心對稱圖形,故本選項符合題意;③不是中心對稱圖形,故本選項不合題意;④是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題考查了中心對稱圖形的定義,熟悉掌握概念是解題的關鍵6、B【解析】平面內(nèi),設⊙O的半徑為r,點P到圓心的距離為d,則有d>r點P在⊙O外;d=r點P在⊙O上;d<r點P在⊙O內(nèi).【詳解】∵⊙O的半徑為3cm,點P到圓心O的距離為4cm,4cm>3cm,∴點P在圓外.故選:B.【點睛】本題考查平面上的點距離圓心的位置關系的問題.7、B【解析】畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好抽到1班和2班的結果數(shù),然后根據(jù)概率公式求解.解:畫樹狀圖為:共有12種等可能的結果數(shù),其中恰好抽到1班和2班的結果數(shù)為2,所以恰好抽到1班和2班的概率=212故選B.8、A【分析】將點(-2,6)代入得出k的值,再將代入即可【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點,∴k=(-2)×6=-12,∴又點(3,n)在此反比例函數(shù)的圖象上,

∴3n=-12,

解得:n=-1.

故選:A【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,只要點在函數(shù)的圖象上,則一定滿足函數(shù)的解析式.反之,只要滿足函數(shù)解析式就一定在函數(shù)的圖象上.9、A【分析】把代入方程,即可求出的值.【詳解】解:∵方程的一個根是,∴,∴,故選:A.【點睛】本題考查了一元二次方程的解,以及解一元一次方程,解題的關鍵是熟練掌握解方程的步驟.10、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故本選項不合題意;B、不是軸對稱圖形,是中心對稱圖形,故本選項不合題意;C、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;D、是軸對稱圖形,也是中心對稱圖形,故本選項符合題意;故選:D.【點睛】本題主要考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后和原來的圖形重合.二、填空題(每小題3分,共24分)11、1.【解析】試題解析:設這棟建筑物的高度為由題意得解得:即這棟建筑物的高度為故答案為1.12、【分析】作BM⊥AC于M,交AD于F,根據(jù)三線合一定理求出BD的長和AD⊥BC,根據(jù)三角形面積公式求出BM,根據(jù)對稱性質(zhì)求出BF=CF,根據(jù)垂線段最短得出CF+EF≥BM,即可得出答案.【詳解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC邊上的中線,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C關于AD對稱,∴BF=CF,根據(jù)垂線段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案為:.【點睛】本題考查了軸對稱?最短路線問題,關鍵是畫出符合條件的圖形,題目具有一定的代表性,是一道比較好的題目.13、(1,3)【分析】根據(jù)頂點式:的頂點坐標為(h,k)即可求出頂點坐標.【詳解】解:由頂點式可知:的頂點坐標為:(1,3).故答案為(1,3).【點睛】此題考查的是求頂點坐標,掌握頂點式:的頂點坐標為(h,k)是解決此題的關鍵.14、【分析】根據(jù)題意列舉出所有情況,并得出兩球顏色相同的情況,運用概率公式進行求解.【詳解】解:一次摸出兩個球的所有情況有(紅1,紅2),(紅1,白1),(紅1,白2),(紅2,白1),(紅2,白2),(白1,白2)6種,其中兩球顏色相同的有2種.所以得獎的概率是.故答案為:.【點睛】本題考查概率的概念和求法,熟練掌握概率的概念即概率=所求情況數(shù)與總情況數(shù)之比和求法是解題的關鍵.15、【分析】作AF⊥,BE⊥,證明△ACF≌△CBE,求出CE,根據(jù)勾股定理求出BC、AC,作DH⊥,根據(jù)DH∥AF證明△CDH∽△CAF,求出CD,再根據(jù)勾股定理求出BD.【詳解】如圖,作AF⊥,BE⊥,則∠AFC=BEC=90°,由題意得BE=3,AF=2+3=5,∵△是等腰直角三角形,90°,∴AC=BC,∠BCE+∠ACF=90°,∵∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∴△ACF≌△CBE,∴CE=AF=5,CF=BE=3,∴,作DH⊥,∴DH∥AF∴△CDH∽△CAF,∴,∴,∴CD=,∴BD=,故答案為:.【點睛】此題考查等腰直角三角形的性質(zhì),全等三角形的判定及性質(zhì),相似三角形的判定及性質(zhì),平行線間的距離處處相等的性質(zhì),正確引出輔助線解決問題是解題的關鍵.16、【分析】連接OC、OD,利用同底等高的三角形面積相等可知陰影部分的面積等于扇形OCD的面積,然后計算扇形面積就可.【詳解】連接OC、OD、CD,如圖所示:∵△COD和△CDE等底等高,∴S△COD=S△ECD.∵點C,D為半圓的三等分點,∴∠COD=180°÷3=60°,∴陰影部分的面積=S扇形COD=.故答案為.【點睛】此題主要考查了扇形面積求法,利用已知得出理解陰影部分的面積等于扇形OCD的面積是解題關鍵.17、-1【詳解】設一元二次方程x2+2x+a=0的一個根x1=1,另一根為x2,則,x1+x2=-=-2,解得,x2=-1.故答案為-1.18、【分析】先得出拋物線的頂點坐標為(0,0),再利用點的平移規(guī)律得到點(0,0)平移后對應的點的坐標為(2,1),然后根據(jù)頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線的頂點坐標為(0,0),再利用點的平移規(guī)律得到點(0,0)平移后對應的點的坐標為(2,1),所以平移后的拋物線解析式為:.故答案為:.【點睛】本題考查的知識點是二次函數(shù)圖象與幾何變化,熟記點的平移規(guī)律是解此題的關鍵.三、解答題(共66分)19、(1)見解析;(2)見解析【分析】(1)連接AD,則AD⊥BC,再由已知,可推出是的垂直平分線,再根據(jù)垂直平分線的性質(zhì)即可得出結論.(2)連接OD,證明OD⊥DE即可.根據(jù)三角形中位線定理和平行線的性質(zhì)可以證明.【詳解】解:(1)證明:連接∵是的直徑∴又∴是的垂直平分線(2)連接∵點、分別是的中點∴又∴∴為的切線;【點睛】本題考查了直徑所對的圓周角是直角,垂直平分線的性質(zhì),切線的判定等,準確作出輔助線是解題的關鍵.20、(1);(2);(2)點的坐標是或【分析】(1)先求得拋物線的對稱軸方程,然后再求得點C的坐標,設拋物線的解析式為y=a(x+1)2+4,將點(-2,0)代入求得a的值即可;

(2)先求得A、B、C的坐標,然后依據(jù)兩點間的距離公式可得到BC、AB、AC的長,然后依據(jù)勾股定理的逆定理可證明∠ABC=90°,最后,依據(jù)銳角三角函數(shù)的定義求解即可;

(2)記拋物線與x軸的另一個交點為D.先求得D(1,0),然后再證明∠DBO=∠CAB,從而可證明∠CAO=ABD,故此當點P與點D重合時,∠ABP=∠CAO;當點P在AB的上時.過點P作PE∥AO,過點B作BF∥AO,則PE∥BF.先證明∠EPB=∠CAB,則tan∠EPB=,設BE=t,則PE=2t,P(-2t,2+t),將P(-2t,2+t)代入拋物線的解析式可求得t的值,從而可得到點P的坐標.【詳解】解:(1)拋物線的對稱軸為x=-=-1.

∵a<0,

∴拋物線開口向下.

又∵拋物線與x軸有交點,

∴C在x軸的上方,

∴拋物線的頂點坐標為(-1,4).

設拋物線的解析式為y=a(x+1)2+4,將點(-2,0)代入得:4a+4=0,解得:a=-1,

∴拋物線的解析式為y=-x2-2x+2.

(2)將x=0代入拋物線的解析式得:y=2,

∴B(0,2).

∵C(-1,4)、B(0,2)、A(-2,0),

∴BC=,AB=2,AC=2,

∴BC2+AB2=AC2,

∴∠ABC=90°.

∴.即的正切值等于.

(2)如圖1所示:記拋物線與x軸的另一個交點為D.

∵點D與點A關于x=-1對稱,

∴D(1,0).

∴tan∠DBO=.

又∵由(2)可知:tan∠CAB=.

∴∠DBO=∠CAB.

又∵OB=OA=2,

∴∠BAO=∠ABO.

∴∠CAO=∠ABD.

∴當點P與點D重合時,∠ABP=∠CAO,

∴P(1,0).

如圖2所示:當點P在AB的上時.過點P作PE∥AO,過點B作BF∥AO,則PE∥BF.

∵BF∥AO,

∴∠BAO=∠FBA.

又∵∠CAO=∠ABP,

∴∠PBF=∠CAB.

又∵PE∥BF,

∴∠EPB=∠PBF,

∴∠EPB=∠CAB.

∴tan∠EPB=.

設BE=t,則PE=2t,P(-2t,2+t).

將P(-2t,2+t)代入拋物線的解析式得:y=-x2-2x+2得:-9t2+6t+2=2+t,解得t=0(舍去)或t=.

∴P(-,).

綜上所述,點P的坐標為P(1,0)或P(-,).【點睛】本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了待定系數(shù)法求二次函數(shù)的解析式、勾股定理的逆定理、等腰直角三角形的性質(zhì)、銳角三角函數(shù)的定義,用含t的式子表示點P的坐標是解題的關鍵.21、(1)作圖見解析,;(2)作圖見解析,;(3)成中心對稱,對稱中心坐標是【分析】(1)根據(jù)關于軸對稱的點的特征找到A,C的對應點,然后順次連接即可,再根據(jù)關于軸對稱的點橫坐標互為相反數(shù),縱坐標相同即可寫出的坐標;(2)將繞原點O順時針旋轉(zhuǎn)90°得到三點的對應點,然后順次連接即可,再根據(jù)直角坐標系即可得到的坐標;(3)利用成中心對稱的概念:如果一個圖形繞某一點旋轉(zhuǎn)180°后與另一個圖形重合,我們就把這兩個圖形叫做成中心對稱判斷即可,然后根據(jù)一組對應點相連,其中點就是對稱中心即可得出答案.【詳解】解:(1)如圖,根據(jù)關于y軸對稱的點的特點可知:;(2)如圖,由圖可知,;(3)根據(jù)中心對稱圖形的定義可知與成中心對稱,對稱中心為線段的中點,坐標是.【點睛】本題主要考查作軸對稱圖形、中心對稱和作旋轉(zhuǎn)圖形,掌握關于y軸對稱的點的特點和對稱中心的求法是解題的關鍵.22、(1)平方米;(2)米;【分析】(1)先根據(jù)圓周角定理可得弦BC為直徑,即可得到AB=AC,根據(jù)特殊角的銳角三角函數(shù)值可求得AB的長,最后根據(jù)扇形的面積公式即可求得結果;(2)設圓錐底面圓的半徑為r,而弧BC的長即為圓錐底面的周長,根據(jù)弧長公式及圓的周長公式即可求得結果.【詳解】(1)∵∠BAC=90°∴弦BC為直徑∴AB=AC∴AB=AC=BC·sin45°=∴S陰影=S⊙O-S扇形ABC=()2-;(2)設圓錐底面圓的半徑為r,而弧BC的長即為圓錐底面的周長,由題意得2r=,解得r=答:(1)被剪掉的陰影部分的面積為;(2)該圓錐的底面圓半徑是.【點睛】圓周角定理,特殊角的銳角三角函數(shù)值,扇形的面積公式,弧長公式,計算能力是初中數(shù)學學習中一個極為重要的能力,是中考的熱點,在各種題型中均有出現(xiàn),一般難度不大,需特別注意.23、(1)10米;(2)33.1米.【分析】(1)首先作于,延長交于,然后根據(jù)斜坡的坡度和水平長度即可得出坡頂?shù)降孛娴木嚯x;(2)首先設米,在中,解得AC,然后在中,利用構建方程,即可得出BC.【詳解】作于,延長交于,則四邊形為矩形,,∵斜坡的坡度為,斜坡的水平長度為米,,即坡項到地面的距離為米;設米,在中,,即,解得,在中,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論