版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題09銳角三角函數(shù)的應(yīng)用
一.選擇題(共4小題)
1.(2023?泰山區(qū)校級(jí)一模)如圖,一艘輪船從位于燈塔C的北偏東60。方向,距離燈塔60〃/淞的小島A出發(fā),沿
正南方向航行一段時(shí)間后,到達(dá)位于燈塔C的南偏東45。方向上的5處,這時(shí)輪船5與小島A的距離是()
北
■
A.30?∕3nmileB.60wra7e
C.↑20nmileD.(30+30?∕3)nmile
2.(2023?泰山區(qū)校級(jí)一模)如圖所示,某攔水大壩的橫斷面為梯形ABCD,AE,。尸為梯形的高,其中迎水坡4?
的坡角a=45。,坡長(zhǎng)AB=Iog米,背水坡8的坡度i=l:G,則背水坡的坡長(zhǎng)C。為()米.
A.20B.20√3C.10D.20√2
3.(2023?泰山區(qū)校級(jí)一模)輪船從B處以每小時(shí)50海里的速度沿南偏東30。方向勻速航行,在5處觀測(cè)燈塔A位
于南偏東75。方向上,輪船航行半小時(shí)到達(dá)C處,在C處觀測(cè)燈塔A位于北偏東60。方向上,則C處與燈塔A的距
離是()海里.
A.25√3B.25√2C.50D.25
4.(2023?東平縣校級(jí)一模)如圖是某商場(chǎng)一樓與二樓之間的手扶電梯示意圖.其中43、CD分別表示一樓、二樓
地面的水平線,ZABC=150o,BC的長(zhǎng)是40〃?,則乘電梯從點(diǎn)B到點(diǎn)C上升的高度〃是()
A.20,"B.C.—√3mD.20√3∕zz
33
二.填空題(共4小題)
5.(2023?岱岳區(qū)校級(jí)一模)在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF//MN,小聰在
河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹(shù)C位于東北方向,然后沿河岸走了30米,到達(dá)8處,測(cè)得河對(duì)岸電
線桿。位于北偏東30。方向,此時(shí),其他同學(xué)測(cè)得8=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度為米.(結(jié)果
保留根號(hào))
6.(2023?東平縣一模)一艘輪船位于燈塔P的南偏東60。方向,距離燈塔30海里的A處,它沿北偏東30。方向航
行一段時(shí)間后,到達(dá)位于燈塔P的北偏東67。方向上的3處,此時(shí)與燈塔尸的距離約為―海里.(參考數(shù)據(jù):
sin37o≈—,cos37o≈≈一,tan37o≈
55
7.(2023?梁山縣一模)一漁船在海島A南偏東20。方向的3處遇險(xiǎn),測(cè)得海島A與3的距離為20(6+1)海里,漁
船將險(xiǎn)情報(bào)告給位于A處的救援船后,沿北偏西65。方向向海島C靠近.同時(shí),從A處出發(fā)的救援船沿南偏西10。
方向勻速航行.20分鐘后,救援船在海島C處恰好追上漁船,那么救援船航行的速度為
8.(2023?墾利區(qū)一模)如圖,一艘輪船位于燈塔P的南偏東60。方向,距離燈塔50海里的A處,它沿正北方向航
行一段時(shí)間后,到達(dá)位于燈塔P的北偏東45。方向上的B處,此時(shí)8處與燈塔P的距離為—海里(結(jié)果保留根
三.解答題(共15小題)
9.(2023?歷下區(qū)一模)交通安全心系千萬(wàn)家,高速公路管理局在某隧道內(nèi)安裝了測(cè)速儀,如圖所示的是該段隧道
的截面示意圖.測(cè)速儀C和測(cè)速儀E到路面之間的距離CD=EF,測(cè)速儀C和E之間的距離CE=750m,一輛小汽
車在水平的公路上由西向東勻速行駛,在測(cè)速儀C處測(cè)得小汽車在隧道入口A點(diǎn)的俯角為25。,小汽車到測(cè)速儀C
的水平距離AD=l4m,在測(cè)速儀E處測(cè)得小汽車在B點(diǎn)的俯角為60。,小汽車在隧道中從點(diǎn)A行駛到點(diǎn)3所用的
時(shí)間為38s(圖中所有點(diǎn)都在同一平面內(nèi)).
(1)求A,3兩點(diǎn)之間的距離(結(jié)果精確到1m);
(2)若該隧道限速22機(jī)∕s,判斷小汽車從點(diǎn)A行駛到點(diǎn)8是否超速?通過(guò)計(jì)算說(shuō)明理由.
(參考數(shù)據(jù):√3≈1.7,sin25o≈0.4,cos25o≈0.9,tan25o≈0.5,sin65o≈0.9,cos65o≈0.4,lan65o≈2.1)
10.(2023?金鄉(xiāng)縣一模)為提高數(shù)學(xué)學(xué)習(xí)的興趣,某學(xué)校數(shù)學(xué)社團(tuán)利用周日舉行了測(cè)量旗桿高度的活動(dòng).已知旗桿
的底座高1米,長(zhǎng)8米,寬6米,旗桿位于底座中心.
測(cè)量方法如下:在地面上找一點(diǎn)。,用測(cè)角儀測(cè)出看旗桿AB頂8的仰角為67.4。,沿Z)E方向走4.8米到達(dá)C地,
再次測(cè)得看旗桿頂B的仰角為73.5。.
(1)求旗桿的高度.
(2)已知夏至日時(shí)該地的最大太陽(yáng)高度約為78。,試問(wèn)夏至日旗桿的影子能不能落在臺(tái)階上?
(太陽(yáng)高度角是指某地太陽(yáng)光線與地平線的夾角.結(jié)果精確到0.1〃?,參考數(shù)據(jù):tan67.4θ"2?4,tan73.5o=24∕7,
tan22,6o≈5∕12,tan!6.5o≈7∕24.tan12o≈0.21)
11.(2023?河口區(qū)校級(jí)一模)某數(shù)學(xué)興趣小組準(zhǔn)備測(cè)量校園內(nèi)旗桿頂端到地面的高度(旗桿底端有臺(tái)階).該小組
在C處安置測(cè)角儀CD,測(cè)得旗桿頂端A的仰角為30。,前進(jìn)8〃?到達(dá)E處,安置測(cè)角儀爐,測(cè)得旗桿頂端A的仰
角為45。(點(diǎn)3,E,C在同一直線上),測(cè)角儀支架高CD=EF=?.2m,求旗桿頂端A到地面的距離即AB的長(zhǎng)度.(結(jié)
果精確到1,聯(lián)參考數(shù)據(jù):√3≈1.7)
12.(2021?南沙區(qū)一模)如圖,身高為1.6米的小明在距離一棵大樹(shù)10米的點(diǎn)B處看大樹(shù)頂端C的仰角為45。,在
大樹(shù)的另一邊點(diǎn)A處看這棵大樹(shù)頂端C的仰角度數(shù)為α.(A、£、B在同一條直線上,忽略眼睛到頭頂間距離)
(1)求大樹(shù)的高度.
(2)若點(diǎn)A與點(diǎn)B之間的距離為(10+10石)米,求C的值.
C
生油一4
AEB
13.(2023?滕州市一模)請(qǐng)根據(jù)對(duì)話和聰聰?shù)淖龇?,解決問(wèn)題
聰聰?shù)淖龇ㄊ牵?/p>
第一步:在教學(xué)樓前5米的M點(diǎn)處測(cè)得大樓頂端的仰角為75。;
第二步:在圖書(shū)館。處測(cè)得教學(xué)樓頂端的仰角為30。,(8、M、。三點(diǎn)共線,A、B、。、C在同一豎直
的平面內(nèi),測(cè)傾儀的高度忽略不計(jì));
第三步:計(jì)算出教學(xué)樓與圖書(shū)館之間BQ的距離.
請(qǐng)你根據(jù)聰聰?shù)淖龇?,?jì)算出教學(xué)樓與圖書(shū)館之間砒>的距離?(結(jié)果精確到1米).
(參考數(shù)據(jù):sin75o≈0.97,cos75o≈0.26,tan75o≈3.73,√2≈1.41,√3≈1.73)
聰聰,教學(xué)樓與圖書(shū)館
之間有池塘你能測(cè)出它
們之間的距離嗎?
14.(2023?荷澤一模)如圖,一座山的一段斜坡BD的長(zhǎng)度為400米,且這段斜坡的坡度i=l:3(沿斜坡從3到。
時(shí),其升高的高度與水平前進(jìn)的距離之比).己知在地面3處測(cè)得山頂A的仰角(即ZABC)為30。,在斜坡。處測(cè)
得山頂A的仰角(即N4DE)為45。.求山頂A到地面BC的高度AC是多少來(lái)?
15?(2023?成武縣校級(jí)一模)春節(jié)期間,小明發(fā)現(xiàn)遠(yuǎn)處大樓的大屏幕時(shí)出現(xiàn)了“新年快樂(lè)”幾個(gè)大字,小明想利用
剛學(xué)過(guò)的知識(shí)測(cè)量“新”字的高度:如圖,小明先在A處,測(cè)得“新”字底端。的仰角為60。,再沿著坡面A3向
上走到5處,測(cè)得“新”字頂端C的仰角為45。,坡面AB的坡度i=l:G,AB=50m,AE=15m(假設(shè)A、B、
C、D、E在同一平面內(nèi)).
(1)求點(diǎn)8的高度防;
(2)求“新”字的高度CD?(C。長(zhǎng)保留一位小數(shù),參考數(shù)據(jù)√5NL732)
16.(2023?長(zhǎng)清區(qū)一模)如圖,某無(wú)人機(jī)興趣小組在操場(chǎng)上開(kāi)展活動(dòng),此時(shí)無(wú)人機(jī)在離地面30米的。處,無(wú)人機(jī)
測(cè)得操控者A的俯角為30。,測(cè)得教學(xué)樓BC頂端點(diǎn)C處的俯角為45。.又經(jīng)過(guò)人工測(cè)量測(cè)得操控者A和教學(xué)樓BC
之間的距離為57米.求教學(xué)樓BC的高度.(點(diǎn)A,B,C,。都在同一平面上,結(jié)果保留根號(hào))
17.(2023?鄲城縣一模)某校數(shù)學(xué)興趣小組利用無(wú)人機(jī)測(cè)量烈士塔的高度.無(wú)人機(jī)在點(diǎn)A處測(cè)得烈士塔頂部點(diǎn)3的
仰角為45。,烈士塔底部點(diǎn)C的俯角為61。,無(wú)人機(jī)與烈士塔的水平距離仞為10〃?,求烈士塔的高度.(結(jié)果保留
整數(shù),參考數(shù)據(jù):sin61o≈0.87,cos61o≈0.48,tan61o≈1.80)
☆
D革
命
烈
士
紀(jì)
念
碑
18.(2023?新泰市一模)如圖是把一個(gè)裝有貨物的長(zhǎng)方體形狀的木箱沿著坡面裝進(jìn)汽車貨廂的示意圖.已知汽車貨
廂高度BG=2米,貨廂底面距地面的高度BH=0.6米,坡面與地面的夾角NBAH=a,木箱的長(zhǎng)(FC)為2米,高(EF)
和寬都是1.6米.通過(guò)計(jì)算判斷:當(dāng)Sina=3,木箱底部頂點(diǎn)C與坡面底部點(diǎn)A重合時(shí),木箱上部頂點(diǎn)E會(huì)不會(huì)觸
5
碰到汽車貨廂頂部.
N
19.(2023?天橋區(qū)一模)某數(shù)學(xué)小組測(cè)量古塔DC的高度,如圖,在A處用測(cè)角儀測(cè)得古塔頂端。的仰角為34。,
沿AC方向前進(jìn)15〃?到達(dá)B處,又測(cè)得古塔頂端。的仰角為45。,已知測(cè)角儀高度AF=I5〃,測(cè)量點(diǎn)A,B與
古塔。C的底部C在同一水平線上,延長(zhǎng)EF交C/)于點(diǎn)G,求古塔DC的高度(精確到1優(yōu),參考數(shù)據(jù):sin34o≈0.56,
cos34o≈0.83,tan34o≈0.67).
20.(2023?博山區(qū)一模)如圖,某超市計(jì)劃將門(mén)前的部分樓梯改造成無(wú)障礙通道.已知樓梯共有五級(jí)均勻分布的臺(tái)
階,高AB=0.75w,斜坡AC的坡比為1:2,將要鋪設(shè)的通道前方有一井蓋,井蓋邊緣離樓梯底部的最短距離
ED=2.55m.為防止通道遮蓋井蓋,所鋪設(shè)通道的坡角不得小于多少度?(結(jié)果精確到1。)
(參考數(shù)據(jù)表)
計(jì)算器按鍵順序計(jì)算結(jié)果(已精確到0.001)
F][?irnEE(DCD臼11.310
0.003
WΓ∏EIIΞJC∑I□ΞI□3(Ξ]14.744
kΓΠEliΞJELECT)CZ)0.005
21.(2023?東阿縣一模)如圖,某巡邏艇在海上例行巡邏,上午10時(shí)在C處接到海上搜救中心從3處發(fā)來(lái)的救援
任務(wù),此時(shí)事故船位于6處的南偏東25。方向上的A處,巡邏艇位于B處的南偏西28。方向上1260米處,事故船位
于巡邏艇的北偏東58。方向上,巡邏艇立刻前往A處救援,已知巡邏艇每分鐘行駛120米,請(qǐng)估計(jì)幾分鐘可以到達(dá)
事故船A處.(結(jié)果保留整數(shù).參考數(shù)據(jù):G=I.73,sin53o≈-,cos53o≈-,tan53o≈-)
553
22.(2023?利津縣一模)如圖,某樓房A3頂部有一根天線BE,為了測(cè)量天線的高度,在地面上取同一條直線上
的三點(diǎn)C,D,A,在點(diǎn)C處測(cè)得天線頂端E的仰角為60。,從點(diǎn)C走到點(diǎn)。,測(cè)得CD=5米,從點(diǎn)。測(cè)得天線
底端8的仰角為45。,已知A,B,E在同一條垂直于地面的直線上,45=25米.
(1)求A與C之間的距離;
(2)求天線BE的高度.(參考數(shù)據(jù):√3≈1.73,結(jié)果保留整數(shù))
23.(2023?臨清市一模)數(shù)學(xué)興趣小組到一公園測(cè)量塔樓高度.如圖所示,塔樓剖面和臺(tái)階的剖面在同一平面,在
臺(tái)階底部點(diǎn)A處測(cè)得塔樓頂端點(diǎn)E的仰角NG4E=50.2。,臺(tái)階AB長(zhǎng)26米,臺(tái)階坡面AB的坡度i=5:12,然后在
點(diǎn)B處測(cè)得塔樓頂端點(diǎn)E的仰角ZEBF=63Ao,則塔頂?shù)降孛娴母叨菶F約為多少米.
(參考數(shù)據(jù):tan50.2°≈1.20,tan63.4o≈2.∞,sin50.2o≈0.77,sin63.4o≈0.89)
E
B
F
GA
專題09銳角三角函數(shù)的應(yīng)用
一.選擇題(共4小題)
1.(2023?泰山區(qū)校級(jí)一模)如圖,一艘輪船從位于燈塔C的北偏東60。方向,距離燈塔60〃/淞的小島A出發(fā),沿
正南方向航行一段時(shí)間后,到達(dá)位于燈塔C的南偏東45。方向上的5處,這時(shí)輪船5與小島A的距離是()
北
■
A.30?∕3nmileB.60〃HWMe
C.TTOnmileD.(30+30G)Wm7e
【答案】D
【分析】過(guò)點(diǎn)C作C£>_LAfi,則在RtΔACD中易得A3的長(zhǎng),再在直角ΔBCD中求出8。,相加可得Λβ的長(zhǎng).
【詳解】解:過(guò)C作S_LA5于。點(diǎn),
.-.ZACD=30o,NBCD=45°,AC=60.
在RlΔA8中,COSZACD=——,
AC
.?.CD=ACcosZACD=60×-=30√^.
2
在RtΔDCB中,NBCD=ZB=45°,
;.CD=BD=3UA
:.AB=AD+BD=(30+30√3)ww?.
答:這時(shí)輪船B與小島A的距離是(30+30√3)wm7e.
故選:D.
北
2.(2023?泰山區(qū)校級(jí)一模)如圖所示,某攔水大壩的橫斷面為梯形ABCD,AE,OF為梯形的高,其中迎水坡A3
的坡角a=45。,坡長(zhǎng)AB=IO夜米,背水坡8的坡度i=l:G,則背水坡的坡長(zhǎng)Cz)為()米.
A.20B.20√3C.10D.20√2
【答案】A
【分析】由AB的坡角a=45。,求出AE的長(zhǎng),再由背水坡CO的坡度i=1:G得出NC=30。,然后由含30。角的直
角三角形的性質(zhì)即可求解.
【詳解】解:由題意得:四邊形gD是矩形,
.-.DF=AE,
迎水坡AB的坡角α=45。,坡長(zhǎng)AB=IO血米,
.?.DF=AE=≠10√2×sin45°=10(米),
?背水坡CD的坡度z=1:√3,
..「_._DF_1√3
..tan(J=i=---=-=-—,
CF√33
.?.ZC=30°,
:.CD=2DF=2AE=24(米),
故選:A.
3.(2023?泰山區(qū)校級(jí)一模)輪船從8處以每小時(shí)50海里的速度沿南偏東30。方向勻速航行,在3處觀測(cè)燈塔A位
于南偏東75。方向上,輪船航行半小時(shí)到達(dá)C處,在C處觀測(cè)燈塔A位于北偏東60。方向上,則C處與燈塔A的距
離是()海里.
A.25√3B.25√2C.50D.25
【答案】D
【分析】根據(jù)題中所給信息,求出NBC4=90。,再求出NCR4=45。,從而得到AABC為等腰直角三角形,然后根
據(jù)解直角三角形的知識(shí)解答.
【詳解】解:根據(jù)題意,
Nl=N2=30°,
ZACD=60°,
.?.ZACB=30o+60o=90o,
.?.ZCβ4=75o-30o=45o,
.?.A4BC為等腰直角三角形,
BC=50x0.5=25(海里),
.?.AC=BC=25(海里).
4.(2023?東平縣校級(jí)一模)如圖是某商場(chǎng)一樓與二樓之間的手扶電梯示意圖.其中AB、8分別表示一樓、二樓
地面的水平線,ZABC=150o,BC的長(zhǎng)是40/",則乘電梯從點(diǎn)3到點(diǎn)C上升的高度力是()
A.20mB.—sHmC.—√3wD.2G乖)m
33
【答案】A
【分析】過(guò)C作CEJ_直線ΛB于E,求出NC8E=30。,根據(jù)含30。角的直角三角形的性質(zhì)得出CE=IBC,代入
2
求出即可.
【詳解】解:過(guò)C作CEJ_直線ΛB于E,貝IJNCEB=90。,CE=h,
NABC=I50。,
.?.NCBE=30°,
BC=AOm,
.?.h^CE=-BC=20m,
2
故選:A.
—.填空題(共4小題)
5.(2023?岱岳區(qū)校級(jí)一模)在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸所//MM,小聰在
河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹(shù)C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電
線桿。位于北偏東30。方向,此時(shí),其他同學(xué)測(cè)得8=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度為米.(結(jié)
果保留根號(hào))
北
【分析】如圖作3〃D,CKLMN,垂足分別為H、K,則四邊形B//CK是矩形,設(shè)CK=HB=x,根據(jù)
tan30。=弛列出方程即可解決問(wèn)題.
BH
【詳解】解:如圖作8",",CKLMN,垂足分別為“、K9則四邊形3//CK是矩形,
NCX4=90。,NC^=45。,
.?.NC4K=NACK=45。,
:.AK=CK=χfBK=HC=AK-AB=X-34,
.?HD=x-30+?0=x-20,
在RTABHD中,ABHD=90°,ZHBD=30°,
.?.tan30°=-,
HB
.√3x-20
.?——,
3X
解得x=30+lOG.
???河的寬度為(30+10G)米.
6.(2023?東平縣一模)一艘輪船位于燈塔P的南偏東60。方向,距離燈塔30海里的A處,它沿北偏東30。方向航
行一段時(shí)間后,到達(dá)位于燈塔P的北偏東67。方向上的B處,此時(shí)與燈塔P的距離約為海里.(參考數(shù)據(jù):
343
sin37o≈-,cos37o≈-,tan37o≈-)
554
【答案】50.
【分析】由題意可得NC4P=/E7%=60。,ZC4B=30o,Λ4=3O海里,則NE4B=90。,NS=37。,在RtΔPAB中,
利用正弦函數(shù)求解即可.
【詳解】解:如圖所示標(biāo)注字母,
根據(jù)題意得,ZC4P=ZEZ?=60o,ZC4B=30o,PA=30海里,
.?.Z∕?B=90o,ZAPB=180O-67O-60O=53O,
.?.ZB=180°-90°-53°=37°,
Ap303
在RtAPAB中,sin37°=——=—≈-,
PBPB5
解得P3χ50,
.?.此時(shí)與燈塔P的距離約為50海里.
故答案為:50.
7.(2023?梁山縣一模)一漁船在海島力南偏東20。方向的3處遇險(xiǎn),測(cè)得海島A與3的距離為20(6+1)海里,漁
船將險(xiǎn)情報(bào)告給位于A處的救援船后,沿北偏西65。方向向海島C靠近.同時(shí),從A處出發(fā)的救援船沿南偏西10。
方向勻速航行.20分鐘后,救援船在海島C處恰好追上漁船,那么救援船航行的速度為.
【分析】作8LAB,得到兩直角三角形A4CD、ABCD,利用三角函數(shù)的知識(shí)即可求得答案.
【詳解】解:作CO_LA8,
NCAB=10。+20。=30。,ZCβ4=65o-20o=45o,
.?.BD=CD=X海里,則AD=[20(√3+1)-幻海里,
CD
在RtAACD中,—=tan30o,
AD
貝IJ—/-----=—,
20(√3+l)-x3
解得X=20,
在RtAACD中,AC=2x20=40海里,
40÷20=2海里/分.
故答案為:2海里/分.
8.(2023?墾利區(qū)一模)如圖,一艘輪船位于燈塔尸的南偏東60。方向,距離燈塔50海里的A處,它沿正北方向航
行一段時(shí)間后,到達(dá)位于燈塔P的北偏東45。方向上的8處,此時(shí)8處與燈塔P的距離為海里(結(jié)果保留
根號(hào)).
【答案】25√6.
【分析】過(guò)點(diǎn)P作尸AB,在RtΔAPC中由銳角三角函數(shù)定義求出Pe的長(zhǎng),再在RtABPC中由銳角三角函數(shù)定
義求出心的長(zhǎng)即可.
【詳解】解:過(guò)戶作PCLAB于C,如圖所示:
由題意得:ZAPC=30。,NBPC=45。,Λ4=50海里,
PC
在RtAAPC中,CoSNA尸C=―
PA
..PC=PA-cosZAPC=50×—=25√3(海里),
2
PC
在RtΔPCB中,cosZBPC=-.
PB
:.PB=———=^^=25√6(海里),
COSNBPC/
V
故答案為:25√6.
≡.解答題(共15小題)
9.(2023?歷下區(qū)一模)交通安全心系千萬(wàn)家,高速公路管理局在某隧道內(nèi)安裝了測(cè)速儀,如圖所示的是該段隧道
的截面示意圖.測(cè)速儀C和測(cè)速儀E到路面之間的距離8=防,測(cè)速儀C和E之間的距離Cε=750m,一輛小汽
車在水平的公路上由西向東勻速行駛,在測(cè)速儀C處測(cè)得小汽車在隧道入口A點(diǎn)的俯角為25。,小汽車到測(cè)速儀C
的水平距離AD=Mm,在測(cè)速儀E處測(cè)得小汽車在B點(diǎn)的俯角為60。,小汽車在隧道中從點(diǎn)A行駛到點(diǎn)B所用的
時(shí)間為38s(圖中所有點(diǎn)都在同一平面內(nèi)).
(1)求A,8兩點(diǎn)之間的距離(結(jié)果精確到IM;
(2)若該隧道限速22”z∕s,判斷小汽車從點(diǎn)A行駛到點(diǎn)B是否超速?通過(guò)計(jì)算說(shuō)明理由.
(參考數(shù)據(jù):√3≈1.7.sin25o≈0.4.cos25o≈0.9,tan25o≈0.5,sin65o≈0.9,cos65o≈0.4,tan65o≈2.1)
【分析】(1)根據(jù)題意可得:ZCAD=25°,ZEBF=60o,CE=Z)F=750米,然后在RtΔACD中,利用銳角三角
函數(shù)的定義求出CZ)的長(zhǎng),再在RtABEF中,利用銳角三角函數(shù)的定義求出班`的長(zhǎng),最后根據(jù)Afi=AD+£)尸-8尸
進(jìn)行計(jì)算即可解答;
(2)先求出汽車的行駛速度,進(jìn)行比較即可解答.
【詳解】解:(1)由題意得:
ZC4T>≈25o,ZEBF=60°,CE=OF=750米,
在RlAACD中,Ar)=I4米,
,,CD
/.14=---------
tan25°
.?.8=7米
在RtABEF中,EF=7米,
pp7
.?.BF=-----=-=≈4.1(米),
tan60o√3
:.AB=AD+DF-BF=i4+150-4Λ≈160(米),
.?.A,8兩點(diǎn)之間的距離約為760米;
(2)小汽車從點(diǎn)A行駛到點(diǎn)5沒(méi)有超速,
理由:由題意得:
760÷38=20米/秒,
20米/秒<22米/秒,
小汽車從點(diǎn)A行駛到點(diǎn)B沒(méi)有超速.
10?(2023?金鄉(xiāng)縣一模)為提高數(shù)學(xué)學(xué)習(xí)的興趣,某學(xué)校數(shù)學(xué)社團(tuán)利用周日舉行了測(cè)量旗桿高度的活動(dòng).已知旗桿
的底座高1米,長(zhǎng)8米,寬6米,旗桿位于底座中心.
測(cè)量方法如下:在地面上找一點(diǎn)。,用測(cè)角儀測(cè)出看旗桿AB頂B的仰角為67.4。,沿。E方向走4.8米到達(dá)C地,
再次測(cè)得看旗桿頂B的仰角為73.5。.
(I)求旗桿的高度?
(2)已知夏至日時(shí)該地的最大太陽(yáng)高度約為78。,試問(wèn)夏至日旗桿的影子能不能落在臺(tái)階上?
(太陽(yáng)高度角是指某地太陽(yáng)光線與地平線的夾角.結(jié)果精確到0.1相,參考數(shù)據(jù):tan67.4?!?.4,tan73.5。=24/7,
tan22.6o≈5∕12,tanl6.5o≈7∕24,tan12o≈0.21)
【分析】(1)設(shè)旗桿的高度為X米,則EB=(X+1)米,利用銳角三角函數(shù)列式計(jì)算即可;
(2)設(shè)夏至日旗桿的影長(zhǎng)為y米,根據(jù)銳角三角函數(shù)解得y的值,然后根據(jù)旗桿的底座長(zhǎng)8米,旗桿位于底座中
心.根據(jù)8÷2=4,比較y與4的大小,進(jìn)而可以解決問(wèn)題.
【詳解】解:(1)設(shè)旗桿的高度為X米,則EB=(X+1)米,
根據(jù)題意可知:NBDE=67.4。,NBCE=735°.Z)C=4.8米,
x+1x+l24
tanNBDE=---≈2.4tanABCE=——------≈—
DEEC+4.8CECE7
%+1
≈2.4
7
24α+D+4.8
解得X=37.4,
.?.旗桿的高度為37.4米;
(2),旗桿的高度為37.4米,則BE=38.4米,
設(shè)夏至日旗桿的影長(zhǎng)為y米,
tanl2o=γ÷Bf≈0.21,
解得y=0.21X38.4≈8.1,
旗桿的底座長(zhǎng)8米,寬6米,
工底座的對(duì)角線是10米,
.?.8.1>5,
.?.夏至日旗桿的影子不能落在臺(tái)階上.
11.(2023?河口區(qū)校級(jí)一模)某數(shù)學(xué)興趣小組準(zhǔn)備測(cè)量校園內(nèi)旗桿頂端到地面的高度(旗桿底端有臺(tái)階).該小組
在C處安置測(cè)角儀CD,測(cè)得旗桿頂端A的仰角為30。,前進(jìn)8〃?到達(dá)E處,安置測(cè)角儀所,測(cè)得旗桿頂端A的仰
角為45。(點(diǎn)3,E,C在同一直線上),測(cè)角儀支架高CD=EF=?.2m,求旗桿頂端A到地面的距離即AB的長(zhǎng)度.(結(jié)
【分析】延長(zhǎng)上交Λ5于點(diǎn)G,根據(jù)題意可得:DF=CE=8∕n,ZX?=EF=BG=L2w,NAGF=90。,然后設(shè)AG=X
m,在RtΔAFG中,利用銳角三角函數(shù)的定義求出尸G的長(zhǎng),從而求出OG的長(zhǎng),再在RlΔADG中,利用銳角三角
函數(shù)的定義列出關(guān)于X的方程,進(jìn)行計(jì)算即可解答.
DF=CE=Sm,DC=EF=BG=I.2m,ZAGF=90°,
設(shè)AG=xm,
在RtAAFG中,ZAFG=45°,
AG
.,.FG=------=x(m),
tan45°
.?.DG=DF+FG=(x+8)∕n,
在RtAADG中,ZADG=30°,
.??no-AG-X_G
..tan30=-----=-------=—,
DGx+83
.?.X=+4,
經(jīng)檢驗(yàn):x=4√5+4是原方程的根,
.?.AB=AG+BG≈12(m),
:.旗桿頂端A到地面的距離即AB的長(zhǎng)度約為12機(jī).
12.(2021?南沙區(qū)一模)如圖,身高為1.6米的小明在距離一棵大樹(shù)10米的點(diǎn)B處看大樹(shù)頂端C的仰角為45。,在
大樹(shù)的另一邊點(diǎn)A處看這棵大樹(shù)頂端C的仰角度數(shù)為α.(A、£、B在同一條直線上,忽略眼睛到頭頂間距離)
(1)求大樹(shù)的高度.
(2)若點(diǎn)A與點(diǎn)3之間的距離為(10+10G)米,求α的值.
C
生^一與
AEB
【分析】(1)由題意得四邊形3EZX7是矩形,則OE=3G=1.6米,DG=BE=IO米,再證ACDG是等腰直角三角
形,得CD=OG=Io米,求解即可;
(2)設(shè)小明在A處時(shí),頭頂為尸,連接AF,則四邊形姐W是矩形,得DF=AE=AB-BE=I。出(米),再由
銳角三角函數(shù)定義求出tanNCH)=且,求解即可.
3
【詳解】解:(1)如圖,CEJGB±AB,DGLCE,
.?.四邊形3E3G是矩形,
..DE=JBG=1.6米,DG=3E=K)米,
NCG£>=45°,
」.△8G是等腰直角三角形,
8=QG=Io米,
/.CE=CD+DE=10+1.6=11.6(米),
二大樹(shù)的高度為11.6米;
(2)設(shè)小明在A處時(shí),頭頂為F,連接。口,
則四邊形4瓦乃是矩形,
48=(10+10揚(yáng)米,
.?.DF=A£=AB-B£=10+10√3-10=10√3(米),
在RtACDF中,tanZCFD=-=-?=-,
DF10√33
.-.ZCFD=30°,
a-30°.
13.(2023?滕州市一模)請(qǐng)根據(jù)對(duì)話和聰聰?shù)淖龇?,解決問(wèn)題
聰聰?shù)淖龇ㄊ牵?/p>
第一步:在教學(xué)樓前5米的M點(diǎn)處測(cè)得大樓頂端的仰角為75。;
第二步:在圖書(shū)館。處測(cè)得教學(xué)樓頂端的仰角為30。,(B、V、。三點(diǎn)共線,A、B、M、D、C在同一豎直
的平面內(nèi),測(cè)傾儀的高度忽略不計(jì));
第三步:計(jì)算出教學(xué)樓與圖書(shū)館之間應(yīng))的距離.
請(qǐng)你根據(jù)聰聰?shù)淖龇?,?jì)算出教學(xué)樓與圖書(shū)館之間8。的距離?(結(jié)果精確到1米).
(參考數(shù)據(jù):sin75o≈0.97,cos75o≈0.26,tan75o≈3.73,√2≈1.41,^≈1.73)
聰聰,教學(xué)樓與圖書(shū)館
之間有池塘你能測(cè)出它
們之間的距離嗎?
【分析】解直角三角形AftW求得他,解RtΔABD可得出處的長(zhǎng),即可得出結(jié)論.
【詳解】解:根據(jù)題意可得NABM=90。,
在RtAABM中,BM=5,ZAMB=75°,
Afl
tanZAMB=——≈3.73,
BM
.?.ΛB≈3.73×5=18.65(米),
在RtΔABD中,ZADB=30o,
tanZADB=,
BD3
.?.BD=√3AB≈1.73×18.65≈32(米),
教學(xué)樓與圖書(shū)館之間的的距離約為32米.
14.(2023?菊澤一模)如圖,一座山的一段斜坡切的長(zhǎng)度為400米,且這段斜坡的坡度,=1:3(沿斜坡從B到。
時(shí),其升高的高度與水平前進(jìn)的距離之比).已知在地面3處測(cè)得山頂A的仰角(即ZABC)為30。,在斜坡。處測(cè)
得山頂A的仰角(即NAOE)為45。.求山頂A到地面3C的高度AC是多少來(lái)?
【分析】作OHJ-BC1于”設(shè)AE=X米,在RlΔBDH中,根據(jù)已知條件可得=400?,進(jìn)而求出。H和
3〃的長(zhǎng)度;在RtAADE中,根據(jù)NADE=45??傻肈E=AE=X米,進(jìn)而求出EC.在RtΔABC中,根據(jù)
tanZASC=——求出x,再結(jié)合AC=AE+EC解答題目.
BC
【詳解】解:過(guò)點(diǎn)。作£>”_L3C于H,設(shè)AE=Xm.
這段斜坡的坡度1=1:3,
:.DH:BH=1:3.
在RtABDH中,DH2+(3DH)2=4002,
.?.DH=40√10(∕n),則BH=120√10(w).
在RtAADE中,NADE=45。,
.?.DE=AE=Xm.
又HC=ED,EC=DH,
:.HC=xin,EC=40yfl0nι,
ΔΓ,x+40√iδ√3
在RtAABC中,tan30°=—
BCl20√10+x^3
解得X=40回,
.?.AC=AE+EC=(40√30+40√10)∕w.
故山頂A到地面BC的高度AC是(40√30+40√10)∕n.
15.(2023?成武縣校級(jí)一模)春節(jié)期間,小明發(fā)現(xiàn)遠(yuǎn)處大樓的大屏幕時(shí)出現(xiàn)了“新年快樂(lè)”幾個(gè)大字,小明想利用
剛學(xué)過(guò)的知識(shí)測(cè)量“新”字的高度:如圖,小明先在A處,測(cè)得“新”字底端。的仰角為60。,再沿著坡面43向
上走到5處,測(cè)得“新”字頂端。的仰角為45。,坡面AB的坡度i=L√5,AB=50m,AE=756(假設(shè)A、B、
C、D、E在同一平面內(nèi)).
(1)求點(diǎn)3的高度BF;
(2)求“新”字的高度C£>.(C。長(zhǎng)保留一位小數(shù),參考數(shù)據(jù)6=1.732)
【分析】(1)由坡度的概念求出所即可;
(2)由勾股定理求出AF,再由銳角三角函數(shù)定義求出Z)E和CG,即可解決問(wèn)題.
【詳解】解:(1)如圖,過(guò)5作8Gl.cE于G,
?坡面AB的坡度1:6,
:.tanZBAF=l-.y∕3=-,
3
:.ZBAF=30°,
;.BF=LAB=25(m);
(2)由勾股定理得,AF=y]AB2-BF2=√5O2-252=,
BG=FE=AF+AE=(25百+75)。〃),
DEL
在RtADAE中,tanZDAE=一=tan60o≈√3.
AE
/.DE=√3AE=75√3(w),
NCBG=45。,
.?.ACBG是等腰直角三角形,
.?.CG=BG=(25百+75)In,
GE=BF=25m,
CD=CG+GE-DE=25√3+75+25-75√3=100-50√3≈13.4(〃?),
答:“新”字的高度CD約為13.4m.
16.(2023?長(zhǎng)清區(qū)一模)如圖,某無(wú)人機(jī)興趣小組在操場(chǎng)上開(kāi)展活動(dòng),此時(shí)無(wú)人機(jī)在離地面30米的。處,無(wú)人機(jī)
測(cè)得操控者A的俯角為30。,測(cè)得教學(xué)樓BC頂端點(diǎn)C處的俯角為45。.又經(jīng)過(guò)人工測(cè)量測(cè)得操控者A和教學(xué)樓BC
之間的距離為57米.求教學(xué)樓BC的高度.(點(diǎn)A,B,C,。都在同一平面上,結(jié)果保留根號(hào))
【分析】過(guò)點(diǎn)。作DE于點(diǎn)E,過(guò)點(diǎn)C作CF_Lf)E于點(diǎn)尸,由題意得AB=57米,DE=30米,ZDAE=30o,
NDCF=45°,再由銳角三角函數(shù)定義求出AE的長(zhǎng),然后求出CF=BE=(57-3Oe)米,進(jìn)而可得教學(xué)樓BC的高
度.
【詳解】解:過(guò)點(diǎn)。作DELAS于點(diǎn)E,過(guò)點(diǎn)C作C戶_LE)E于點(diǎn)F,如圖所示:
則四邊形BCEE是矩形,
由題意得:AB=57米,DE=30米,ZDAE=30o,ZDCF=45。,
在RtΔADE中,ZAED=90。,
DE
.?.tanNZ)A£"=,
AE
AE=―—==30G(米),
tan30o√∣
T
.?.BE=AB-AE=(57-30√3)米,
四邊形BCFE是矩形,
/.CF=BE=(57-30√3)米,
在RtΔDCF中,Ne)FC=90。,
;.NCDF=NDCF=45°,
:.DF=CF=(57-306)米,
.?.BC=EF=30-57+30√3=(30√3-27)^,
答:教學(xué)樓BC的高度為(3θ8-27)米.
17.(2023?鄲城縣一模)某校數(shù)學(xué)興趣小組利用無(wú)人機(jī)測(cè)量烈士塔的高度.無(wú)人機(jī)在點(diǎn)A處測(cè)得烈士塔頂部點(diǎn)5的
仰角為45。,烈士塔底部點(diǎn)C的俯角為61。,無(wú)人機(jī)與烈士塔的水平距離為IO,",求烈士塔的高度.(結(jié)果保留
整數(shù),參考數(shù)據(jù):sin6Io≈0.87,cos61o≈0.48,tan61°≈1.80)
R
☆
D革
嘲:命
烈
士
紀(jì)
念
碑
CDCD
【分析】在RtAABD中,ZS4Z)=45o,可得AD=BD=10機(jī),在RtΔACD中,tan61°=——=—≈1.80,求出8,
AD10
根據(jù)BC=BD+CZ)可得答案.
【詳解】解:在RtΔABD中,ZBAD=45°,
.?.AD=BD=10/7?,
C∏CD
在RtΔACD中,tan61。=—=一≈1.80,
AD10
解得8≈18,
.?BC=BD+CD=28m
.?.烈士塔的高度約為28m.
18.(2023?新泰市一模)如圖是把一個(gè)裝有貨物的長(zhǎng)方體形狀的木箱沿著坡面裝進(jìn)汽車貨廂的示意圖.已知汽車貨
廂高度3G=2米,貨廂底面距地面的高度BH=0.6米,坡面與地面的夾角NBAH=a,木箱的長(zhǎng)(FC)為2米,高(Er)
和寬都是1?6米.通過(guò)計(jì)算判斷:當(dāng)Sina=木箱底部頂點(diǎn)C與坡面底部點(diǎn)A重合時(shí),木箱上部頂點(diǎn)E會(huì)不會(huì)觸
5
碰到汽車貨廂頂部.
【分析】根據(jù)題意作出合適的輔助線,然后利用銳角三角函數(shù)求出87+EK的長(zhǎng)度,再與2比較大小即可解答本題.
【詳解】解:B"=0.6米,sina=-,
BH_0-6_|來(lái)
■■AB——~-—-1√∣s,
Sina?
5
.?.A∕7=0.8米,
AF=FC=2米,
.?.3F=]米,
作E/_L8G于點(diǎn)J,作EKJL/7于點(diǎn)K,
AEKF=AFJB=ZAHB=90)°,ZEFK=ZFR/=ZABH,BF=AB,
:.莊FKSaBJS^BH,WBJ三N?BH,
EFFKEK
K∕=3"=0.6米,
~AB~~BH~~AH
1.6FKEK
即hπ—=----=----
10.60.8
解得,EK=L28,
.?.β∕+EK=0.6+1.28=1.88<2,
木箱上部頂點(diǎn)E不會(huì)觸碰到汽車貨廂頂部.
19.(2023?天橋區(qū)一模)某數(shù)學(xué)小組測(cè)量古塔Z)C的高度,如圖,在A處用測(cè)角儀測(cè)得古塔頂端。的仰角為34。,
沿AC方向前進(jìn)15〃?到達(dá)B處,又測(cè)得古塔頂端。的仰角為45。,已知測(cè)角儀高度A£=BF=I5〃,測(cè)量點(diǎn)A,B與
古塔DC的底部C在同一水平線上,延長(zhǎng)EF交C7)于點(diǎn)G,求古塔DC的高度(精確到,參考數(shù)據(jù):sin34o≈0.56,
cos34o≈0.83,tan34o≈0.67).
【分析】根據(jù)題意可得:GC=AE=BF=L5m,AB=EF=15米,ZDGE=ZDCA=90°,然后設(shè)Z)G=x,",在
RtADGF中,利用銳角三角函數(shù)的定義求出產(chǎn)G=X機(jī),從而可得EG=(X+15)川,再在RtADGE中,利用銳角三角
函數(shù)的定義列出關(guān)于X的方程,進(jìn)行計(jì)算可求出OG的長(zhǎng),最后利用線段的和差關(guān)系進(jìn)行計(jì)算,即可解答.
【詳解】解:由題意得:
GC=AE=BF=L5m,ΛB=EF=15米,NDGE=NDCA=90°,
設(shè)DG=xm,
在RtADGF中,Nr)FG=45。,
.?.FG---DG-=x(m)>
tan45°
EG=EF+FG=(x+15)∕M,
在RtΔDGE中,NZ)EG=34。,
.?.tan340=-=—^≈0.67,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025石方爆破專業(yè)施工合同
- 2025餐館合作經(jīng)營(yíng)合同
- 特殊人群的出行安全保障措施研究
- 網(wǎng)絡(luò)安全產(chǎn)品銷售中的技術(shù)合同法律解析
- 課題申報(bào)參考:康區(qū)佛苯藝術(shù)中的儒家人物形象演變與漢藏文化交融研究
- 環(huán)保理念下的小型機(jī)械設(shè)備創(chuàng)新設(shè)計(jì)實(shí)踐探討
- 2024年高等教育服務(wù)項(xiàng)目資金籌措計(jì)劃書(shū)
- 跨學(xué)科學(xué)習(xí)模式下的學(xué)生個(gè)性化發(fā)展
- 2025年人教版PEP七年級(jí)物理上冊(cè)階段測(cè)試試卷含答案
- 2025年蘇科新版必修1地理上冊(cè)階段測(cè)試試卷含答案
- 2025貴州貴陽(yáng)市屬事業(yè)單位招聘筆試和高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024年住院醫(yī)師規(guī)范化培訓(xùn)師資培訓(xùn)理論考試試題
- 期末綜合測(cè)試卷(試題)-2024-2025學(xué)年五年級(jí)上冊(cè)數(shù)學(xué)人教版
- 2024年廣東省公務(wù)員錄用考試《行測(cè)》試題及答案解析
- 結(jié)構(gòu)力學(xué)本構(gòu)模型:斷裂力學(xué)模型:斷裂力學(xué)實(shí)驗(yàn)技術(shù)教程
- 2024年貴州省中考理科綜合試卷(含答案)
- 無(wú)人機(jī)技術(shù)與遙感
- PDCA提高臥床患者踝泵運(yùn)動(dòng)的執(zhí)行率
- 新東方四級(jí)詞匯-正序版
- 借名購(gòu)車位協(xié)議書(shū)借名購(gòu)車位協(xié)議書(shū)模板(五篇)
- 同步輪尺寸參數(shù)表詳表參考范本
評(píng)論
0/150
提交評(píng)論