版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省五市八校協(xié)作體2023-2024學年高考適應性考試數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-12.已知,其中是虛數(shù)單位,則對應的點的坐標為()A. B. C. D.3.的展開式中的系數(shù)是-10,則實數(shù)()A.2 B.1 C.-1 D.-24.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.5.已知集合,則等于()A. B. C. D.6.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.7.已知雙曲線的左焦點為,直線經過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,,若,則該雙曲線的離心率為().A. B. C. D.8.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風力發(fā)電,近10年來,全球風力發(fā)電累計裝機容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發(fā)電技術也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔當與決心.以下是近10年全球風力發(fā)電累計裝機容量與中國新增裝機容量圖.根據(jù)所給信息,正確的統(tǒng)計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過9.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.10.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.412.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.二、填空題:本題共4小題,每小題5分,共20分。13.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則14.已知多項式的各項系數(shù)之和為32,則展開式中含項的系數(shù)為______.15.將2個相同的紅球和2個相同的黑球全部放入甲、乙、丙、丁四個盒子里,其中甲、乙盒子均最多可放入2個球,丙、丁盒子均最多可放入1個球,且不同顏色的球不能放入同一個盒子里,共有________種不同的放法.16.已知函數(shù)函數(shù),則不等式的解集為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)設,若存在兩個極值點,,且,求證:;(2)設,在不單調,且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).18.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設,,求證:.19.(12分)在中,內角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.20.(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.21.(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當時,求函數(shù)的極值;(2)設函數(shù)的導函數(shù)為,求證:函數(shù)有且僅有一個零點.22.(10分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標準方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎題.2、C【解析】
利用復數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.【點睛】本題考查復數(shù)的代數(shù)表示法及其幾何意義,考查復數(shù)相等的條件,是基礎題.3、C【解析】
利用通項公式找到的系數(shù),令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數(shù),考查學生的運算求解能力,是一道容易題.4、D【解析】
由圖象求出以及函數(shù)的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數(shù)的解析式,結合的取值范圍求出的值,由此可得出函數(shù)的解析式.【詳解】由圖象可得,函數(shù)的最小正周期為,.將點代入函數(shù)的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數(shù)解析式,考查分析問題和解決問題的能力,屬于中等題.5、C【解析】
先化簡集合A,再與集合B求交集.【詳解】因為,,所以.故選:C【點睛】本題主要考查集合的基本運算以及分式不等式的解法,屬于基礎題.6、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.7、A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點坐標縱坐標關系進行求解即可.【詳解】由題意可知直線的方程為,不妨設.則,且將代入雙曲線方程中,得到設則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點坐標關系和已知條件即可求解,屬于一般性題目.8、D【解析】
先列表分析近10年全球風力發(fā)電新增裝機容量,再結合數(shù)據(jù)研究單調性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現(xiàn)下降趨勢,B錯誤;經計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎題.9、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.10、B【解析】
先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據(jù)條件與結論中參數(shù)的取值范圍進行判斷.11、C【解析】
由二項式系數(shù)性質,的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質,掌握二項式系數(shù)性質是解題關鍵.12、D【解析】
根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【點睛】本題主要考查線性規(guī)劃的基本應用,利用數(shù)形結合,結合目標函數(shù)的幾何意義是解決此類問題的基本方法.14、【解析】
令可得各項系數(shù)和為,得出,根據(jù)第一個因式展開式的常數(shù)項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數(shù)項的積的和即為展開式中含項,可得解.【詳解】令,則得,解得,所以展開式中含項為:,故答案為:【點睛】本題主要考查了二項展開式的系數(shù)和,二項展開式特定項,賦值法,屬于中檔題.15、【解析】
討論裝球盒子的個數(shù),計算得到答案.【詳解】當四個盒子有球時:種;當三個盒子有球時:種;當兩個盒子有球時:種.故共有種,故答案為:.【點睛】本題考查了排列組合的綜合應用,意在考查學生的理解能力和應用能力.16、【解析】,,所以,所以的解集為。點睛:本題考查絕對值不等式。本題先對絕對值函數(shù)進行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對值函數(shù)一般都去絕對值轉化為分段函數(shù)處理。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)先求出,又由可判斷出在上單調遞減,故,令,記,利用導數(shù)求出的最小值即可;(2)由在上不單調轉化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調遞減,令,記,則在上單調遞增;,在上單調遞增;,(2),,在上不單調,在上有正有負,在上有解,,,恒成立,記,則,記,,在上單調增,在上單調減.于是知(i)當即時,恒成立,在上單調增,,,.(ii)當時,,故不滿足題意.綜上所述,【點睛】本題主要考查了導數(shù)的綜合應用,考查了分類討論,轉化與化歸的思想,考查了學生的運算求解能力.18、(1).(2)見解析【解析】
(1)由絕對值三解不等式可得,所以當時,,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【點睛】本題主要考查絕對值三角不等式及基本不等式的簡單應用,屬于中檔題.19、(1)(2)【解析】
(1)利用二倍角公式及三角形內角和定理,將化簡為,求出的值,結合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結合,,求出的范圍,注意.進而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應用,求三角形的周長的范圍問題.屬于中檔題.20、(1),;(2)【解析】
(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實數(shù)的值;對函數(shù)進行求導,,通過導數(shù)求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導數(shù)可知在上為單調減函數(shù),由可得,從而可求實數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,,故在上遞減,在上遞增,若,則恒成立,單調遞增,無極值點;所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點存在性定理知在區(qū)間上,存在為函數(shù)的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構造函數(shù),所以,當時,,即恒成立,故在上為單調減函數(shù),其中.則可轉化為,故,由,設,可得當時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調性,考查了利用導數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉化的思想.對于恒成立的問題,常轉化為求的最小值,使;對于恒成立的問題,常轉化為求的最大值,使.21、見解析【解析】
(1)當時,函數(shù),其定義域為,則,設,,易知函數(shù)在上單調遞增,且,所以當時,,即;當時,,即,所以函數(shù)在上單調遞減,在上單調遞增,所以函數(shù)在處取得極小值,為,無極大值.(2)由題可得函數(shù)的定義域為,,設,,顯然函數(shù)在上單調遞增,當時,,,所以函數(shù)在內有一個零點,所以函數(shù)有且僅有一個零點;當時,,,所以函數(shù)有且僅有一個零點,所以函數(shù)有且僅有一個零點;當時,,,因為,所以,,又,所以函數(shù)在內有一個零點,所以函數(shù)有且僅有一個零點.綜上,函數(shù)有且僅有一個零點.22、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)設點的坐標,表達出直線的斜率之積,再根據(jù)三點均在橢圓上,根據(jù)橢圓的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 經營公司企業(yè)年度工作計劃
- 小學六年級期中考試復習計劃
- 加油站201年下半年工作計劃
- 防疫及衛(wèi)生協(xié)管工作計劃
- 教師信息技術校本研修工作計劃范文
- 2025學年數(shù)學備課組工作計劃
- 《水處理技術介紹》課件
- 《大吸收波長的計算》課件
- 《EXO成員總介紹》課件
- 《外盤期貨介紹》課件
- 音樂傳奇-張國榮
- 東方甄選直播用戶畫像及抖音搜索指數(shù)2023
- 上海年某單層廠房造價指標
- 制度-xxxxx有限公司反商業(yè)賄賂管理制度
- 零基礎的住宅和城市設計智慧樹知到答案章節(jié)測試2023年同濟大學
- 2022年湖北省武漢市中考英語試卷及答案
- casio-5800p程序集錦(卡西歐5800編程計算機)
- 酒店安全整改報告
- 陳淑惠中文網絡成癮量表
- 先找財源還是先找人源財源源
- 黑布林英語 Can I play閱讀課件
評論
0/150
提交評論