2023年河南省洛陽市宜陽縣中考二模數(shù)學(xué)試題(含答案)_第1頁
2023年河南省洛陽市宜陽縣中考二模數(shù)學(xué)試題(含答案)_第2頁
2023年河南省洛陽市宜陽縣中考二模數(shù)學(xué)試題(含答案)_第3頁
2023年河南省洛陽市宜陽縣中考二模數(shù)學(xué)試題(含答案)_第4頁
2023年河南省洛陽市宜陽縣中考二模數(shù)學(xué)試題(含答案)_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

宜陽縣2023年九年級第二次模擬考試

數(shù)學(xué)試卷

注意事項:

L答卷前,考生務(wù)必將自己的姓名、考號填寫在答題卡上.

2.請將答案答在答題卡上,答在本試卷上無效.

3.考試結(jié)束,將答題卡交回.

一、選擇題(每小題3分,共30分)

1.一2的相反數(shù)是()

C?11

A.-2B.2C.D.一

22

2.下面幾何體的正視圖、俯視圖和左視圖是全等圖形的幾何體是()

A.長方體B.圓錐C.圓柱D.球體

3.如圖,直線A8與直線C。相交于點O,若OE平分NAoC,OF平分NBOC,N3OR=40°,則

4COE=()

i?k

A70B

D

A.40oB.50oC.30°D.60°

4.下列運算正確的是()

IO2./2\35

A.-----=2B.()=Cr

10?,

C.β2+l=(β+l)2D.D=26

5.如圖,在RtABC中,NABC=90°,BOLAC,點。為垂足,若AB=3,BC=4,則AD=

()

CB

A.2B.2.4C.2.5D.1.2

6.一元二次方程/一X一2=O的根的情況是()

A.有兩個不相等的實數(shù)根B.沒有實數(shù)根

C.有兩個相等的實數(shù)根D.只有一個實數(shù)根

7.小明對本班20名男生依次立定跳遠(yuǎn)測試成績統(tǒng)計如下:小于200cm有5人,不小于200cm但小于220cm

的有4人,不小于220Cm但小于240Cm的有4人(具體為:220,222,222,224),不小于240Cm但小于

260cm的有7人。請問這20個數(shù)據(jù)的中位數(shù)是()

A.200B.220C.221D.222

8.在平行四邊形ABa)的對角線AC與BD相交于點O,BC=5,AC=6,BD=8,則四邊形ABe。是

()

A.平行四邊形B.矩形C.菱形D.正方形

k

9.如圖,點A(m,加+1),3(∕n+3,加一1)都在反比例函數(shù)y=—(x>0)的圖象上,則k的值為()

A.3B.6C.14D.12

10.在ABC中,NA=I20。,AB=4,AC=2,則sin3的值是()

5√7√3√21√21

A.------B.-----C.------D.------

145714

二、填空題(每小題3分,共15分)

11.分式一匚有意義的條件是.

%—1

%—3y=2

12.方程組1J的解集為_________.

2x+y=18

13.某學(xué)校從“立定跳遠(yuǎn),拋擲實心球,100米短跑,足球”四個項目中抽取兩項進(jìn)行測試,恰好抽到“立定

跳遠(yuǎn)”和“100米短跑”的概率為.

14.如圖,將扇形408繞點A逆時針旋轉(zhuǎn),得到扇形A(ZB',點O,8的對應(yīng)點分別為點O',B',且。落

在弧AB上,連結(jié)33'。若NO=90。,。4=2,則陰影部分的周長為.

15.如圖,在矩形ABCo中,點E在邊CO上,將右4?E沿AE對折,使點。落在邊BC上的5點,若

AD=10,AB=S,則四邊形A。EF的外接圓的半徑為.

三、解答題(本題8個小題,共75分)

16.(1)計算:fl—--1x-lx^+2x+1

Ix+ljX+1χ2—1

(2)計算:√iθlθ+2sin30o+13-Λ-∣-(-1)2003

17.某興趣小組為了測量大樓CD的高度,先沿著斜坡AB走了52m到達(dá)坡頂點B處,然后在點B處測得大樓

頂點C的仰角為53。,已知斜坡AB的坡度為i=,點A到大樓的距離AD為72m,求大樓的高度CD

2.4

3

(sin53o≈0.8.cos≈0.6,tan53o≈-)

4

18.菲爾茲獎是一個在國際數(shù)學(xué)聯(lián)盟的國際數(shù)學(xué)家大會上頒發(fā)的獎項.每四年頒發(fā)一次,頒發(fā)給有卓越貢獻(xiàn)的

年輕數(shù)學(xué)家,每次最多四人得獎.得獎?wù)唔氃谠撃暝┣拔礉M四十歲.它是根據(jù)加拿大數(shù)學(xué)家約翰?查爾斯?菲

爾茲的要求設(shè)立的,被視為數(shù)學(xué)界的諾貝爾獎.從1936年至2022年,共有64位數(shù)學(xué)家獲得菲爾茲獎,其中

有兩位華人(丘成桐、陶哲軒).

下列數(shù)據(jù)是截止2022年菲爾茲獎得主獲獎時的年齡:

29393533392833353131373238

36313932383734293438323536

33293235363739384038373938

34334036363740313838404037

353937373934313739353738

(1)上面這64個數(shù)據(jù)的中位數(shù)是,眾數(shù)是

(2)菲爾茲獎得主獲獎時年齡的極差是;

(3)求這組數(shù)據(jù)的平均數(shù);

19.某地計劃用12O~18O天(含120天與180天)的時間建設(shè)一項水利工程,工程需要運送土石方總位為360

萬m2o

(1)請寫出運輸公司完成任務(wù)所需的時間y(單位:天)與平均每天的工作量X(單位:萬m?)之間的函數(shù)

關(guān)系式,并給出自變量X的取值范圍;

(2)由于工程進(jìn)度的需要,實際平均每天運送土石方比原計劃多5000∏√,工期比原計劃減少了24天,原

計劃和實際平均每天運送土石方各是多少萬m??

20.已知直線X=KX+力與雙曲線以=?相交于點P(—2,1)、e(l,m).

(1)求仁,b,占的值.

(2)在同一坐標(biāo)系中畫出直線X=KX+〃與雙曲線%=幺,根據(jù)圖寫出不等式勺x+人之為的解集.

XX

21.請閱讀下面材料,并按要求完成相應(yīng)的任務(wù).

阿基米德是偉大的古希臘數(shù)學(xué)家、哲學(xué)家和物理學(xué)家,他與牛頓、高斯并稱三大數(shù)學(xué)王子.《阿基米德全

集》的《引論集》中記述的一個引理用幾何語言表示如下:如圖,在.ABC中,ZABC=90o,以AB為直

徑作半圓O,交AC于點。,過點。作Z)ELAB于點E,過點。作半圓O的切線07交BC于點T,連結(jié)

AT交。E于點尸,則DF=EF.

任務(wù):(1)請完成該引理的證明;

⑵若FT=CT=6,求半圓。的半徑.

22.已知關(guān)于X的函數(shù)y=小一億一I)X—2Z—2的圖象與y軸交于點C

(I)當(dāng)攵=2時?,求圖象與X軸的交點坐標(biāo);

(2)若x≥g時,函數(shù)y隨著X的增大而增大,求Z的取值范圍;

(3)無論4為何值時,函數(shù)的圖象都經(jīng)過兩個定點,請直接寫出這兩個定點的坐標(biāo).

23.閱讀材料:我們學(xué)習(xí)了《二次根式》和《乘法公式》,可以發(fā)現(xiàn):當(dāng)α>0,b>0時,有

^?∣a+VFj=a-2?[ab+b≥0,.'.a+b≥2?[ab,當(dāng)且僅當(dāng)α=b時取等號.

請利用上述結(jié)論解決以下問題:

(1)當(dāng)x>0時,X+'的最小值為;當(dāng)χ<0時,x+工的最大值為

XX

χ~+3r+]6

(2)當(dāng)x>0時,求y=±±二的最小值;

X

(3)如圖,四邊形ABCQ的對角線AC、Bo相交于點。,AOB.ACOD的面積分別為9和16,求四邊

形ABCD的面積.

九年級數(shù)學(xué)參考答案及評分意見

一、選擇題(每小題3分,共30分)

題號12345678910

答案BDBDBACCDD

二、填空(每小題3分,共15分)

題號1112131415

x=8?5√5

答案x≠?1=2?+2+2√2

63F

三、解答題(8個小題,共75分)

16.解:(1)fl—-—>∣÷3χ2+2x+1

Ix+?)x+?

Jl1:XT(χ+ι)’

?x+?Jx+1(x+l)(x-l)

_x-1x+1

x+1x—1

^(Λ-1)2-(Λ+1)2

(x+l)(%-l)

-4x

~x2-l

(2)√101°+2sin30o+p-π?-(-l)20°3

=l+2xg+7一3一(一1)

=l+l+^?-3+l

17.解:過點B作BELCD于點E,過點8作AD于點F,

在RtABF中,ZBE4=90。,AB=52,由i=」一可知AR=2.4BF,

2.4

由勾股定理可知:BF2+(2.4BF)2=52?

解得:BF=20,AR=2.4x20=48

由圖可知:DE=BF=20.

BE=FD=AD—AF=72—48=24

在RteEB中,NCBE=90。,由銳角三角函數(shù)可知:

3

CE=BEtanZCEB=24Xtan53°弓24x—=16

4

.?.C£)=CE+EO=16+24=40

答:大樓的高度約為40米.

18.解:(1)36.5;37

(2)40-28=12.

-I

(3)Λ=-(28+3×29+5×31+4×32+4×34+6×35+5×36+10×37+9×38+8×39+5×40)

≈35.6

19.解:(1)依題意,得y=獨

X

把y=120,y=180分別代入y=獨中,解得x=3,x=2,

X

所以自變量X的取值范圍為2≤x≤3

(2)設(shè)原計劃平均每天運送土石方X萬m3,實際平均每天運送土石方(X+0.5)萬m3

?口示*,口360360..

依戒意得:------------二24

X%+0.5

解這個方程,得

%=2.5或X=-3

經(jīng)檢驗,x=2.5,X=-3都是方程的解,但x=—3不符合題意,故舍去.

答:原計劃平均每天運送土石方2.5萬m3,實際平均每天運送土石方3萬m3

20.解:(1)由題意知I=幺,k2=-2

-2-

-2C

/.m=——=-2

1

∫-2?1+?=1

**Jt1+?=-2

k,=—1

解得:\1

[h=-l

(2)圖象略.

觀察圖象可知:不等式匕x+匕N4的解集為x≤-2或0≤x≤l

X

21.(1)證明:連結(jié)。。、OT,DB.

DT與半圓O相切,

又OD=OB,OT=OT

.?.RtODT=RtOBT..DT=BT

.-.ZTDB=ZTBD

又AB是半圓O的直徑

.-.ZADB=90°

.?.ZTDB+ZCDT=90°,ZTBD+ZTCD=90°

.?.ZCDTZTCD,:.DT=Cr

.?.CT=BT

DELAB,ZABC=90°,.?DE∕∕BC

.?.ADT-△ACT,..AEF.ABT,

DFAF_BF

.-.DF=EF

~CT~~AT~~BT

(2)過點T作7H_LDE,于點H,則四邊形BEHr是矩形

FT=CT,Cr=DT

:.DT=HF,:.DH=HF

..EH=HF+2HF=BT=6,.?HF=2,

.?.OE=6+2=8

在RIHTF中,根據(jù)勾股定理,得HT=dFT?—HF?=4也

.?.BE=HT=4√2

設(shè)半圓。的半徑為廠,則OE=尸-4夜,連結(jié)0£>,在RtODE中,根據(jù)勾股定理,得

OD2=OE2+DE2,即產(chǎn)="—4血『+8、解得尸=6夜

22.解:(1)當(dāng)左=2時,>,=2x2-X—6=(2x+3)(x-2)

3f3?

令y=0,得(2x+3)(尤—2)=(),解得芭=一3,々=2所以這是函數(shù)的圖象與X軸的的交點為一二,0

2\2?

(W

(2)①當(dāng)上=0時,y=x—2,符合題意.

當(dāng)AHO時,y是關(guān)于X的二次函數(shù).

L_1111

②若Z

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論