人教版六年級(jí)數(shù)學(xué)上冊(cè)第八單元大單元教學(xué)設(shè)計(jì)_第1頁(yè)
人教版六年級(jí)數(shù)學(xué)上冊(cè)第八單元大單元教學(xué)設(shè)計(jì)_第2頁(yè)
人教版六年級(jí)數(shù)學(xué)上冊(cè)第八單元大單元教學(xué)設(shè)計(jì)_第3頁(yè)
人教版六年級(jí)數(shù)學(xué)上冊(cè)第八單元大單元教學(xué)設(shè)計(jì)_第4頁(yè)
人教版六年級(jí)數(shù)學(xué)上冊(cè)第八單元大單元教學(xué)設(shè)計(jì)_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版六年級(jí)數(shù)學(xué)上冊(cè)第八單元大單元教學(xué)設(shè)計(jì)

第八單元數(shù)學(xué)廣角-數(shù)與形單元解讀

一、鏈接課標(biāo)

《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》在“學(xué)段目標(biāo)”的“第

三學(xué)段”中提出:“初步形成數(shù)感和空間觀念,感受符號(hào)和幾何直觀

的作用”“在觀察、實(shí)驗(yàn)、猜想、驗(yàn)證等活動(dòng)中,發(fā)展合情推理能力,

能進(jìn)行有條理的思考,能比較清楚地表達(dá)自己的思考過(guò)程與結(jié)果”“在

運(yùn)用數(shù)學(xué)知識(shí)和方法解決問(wèn)題的過(guò)程中,認(rèn)識(shí)數(shù)學(xué)的價(jià)值”。同時(shí)提

出:“探索給定情境中隱含的規(guī)律或變化趨勢(shì)”。“形”的問(wèn)題中包

含著“數(shù)”的規(guī)律,“數(shù)”的問(wèn)題也可以用“形”來(lái)幫助解決。小學(xué)

階段,雖然不要求寫出一個(gè)數(shù)列的通項(xiàng)公式,但可以通過(guò)數(shù)形結(jié)合的

方式,利用圖形的規(guī)律,從不同角度用自己的語(yǔ)言描述出數(shù)列的通用

表達(dá)式,進(jìn)而達(dá)到滲透數(shù)形結(jié)合、抽象概括等數(shù)學(xué)思想的教學(xué)目的。

二、單元目標(biāo)

1.使學(xué)生會(huì)用數(shù)形結(jié)合的方法解決一些數(shù)學(xué)問(wèn)題。

2.在解決問(wèn)題的過(guò)程中培養(yǎng)學(xué)生的發(fā)現(xiàn)模式、應(yīng)用模式的能力,

提高推理能力。

3.在解決問(wèn)題的過(guò)程中掌握和體會(huì)數(shù)形結(jié)合、極限等數(shù)學(xué)思想。

在教學(xué)時(shí),通過(guò)學(xué)生的自主探究、合作交流,既要讓學(xué)生充分利

用圖形的直觀、形象特點(diǎn),用圖形來(lái)表示數(shù)的規(guī)律性,感受化數(shù)為形

的簡(jiǎn)捷性;同時(shí),又要讓學(xué)生尋找圖形中所包含的數(shù)的規(guī)律,用數(shù)(或

代數(shù)式)來(lái)表示圖形,建立模式,感受用數(shù)或者代數(shù)式表示的概括性。

總之,要讓學(xué)生在解決問(wèn)題的過(guò)程體會(huì)到數(shù)與形的完美結(jié)合,并逐步

培養(yǎng)學(xué)生的抽象概括能力。

三、內(nèi)容分析

數(shù)與形是數(shù)學(xué)廣角,編排的一個(gè)新的教學(xué)內(nèi)容。數(shù)與形相結(jié)合的

例子在小學(xué)數(shù)學(xué)教材與教學(xué)中隨處可見。有的時(shí)候,是圖形中隱含著

數(shù)的規(guī)律,可利用數(shù)的規(guī)律來(lái)解決圖形的問(wèn)題。有的時(shí)候,是利用圖

形來(lái)直觀地解釋一些比較抽象的數(shù)學(xué)原理與事實(shí),讓人一目了然。尤

其是小學(xué)生思維的抽象程度還不夠高,經(jīng)常需要借助直觀模型來(lái)幫助

理解。數(shù)與形密不可分,可用“數(shù)”來(lái)解決“形”的問(wèn)題,也可用“形”

來(lái)解決“數(shù)”的問(wèn)題。例1讓學(xué)生計(jì)算從1開始的連續(xù)若干個(gè)奇數(shù)之

和。在計(jì)算時(shí),即使不借助圖形,也可以通過(guò)1=1、1+3=4、1+3+5=9……

發(fā)現(xiàn)規(guī)律:從1開始,連續(xù)n個(gè)奇數(shù)之和,就是n的平方。但把圖與

式對(duì)應(yīng)起來(lái),更具直觀性,更能讓學(xué)生體會(huì)到數(shù)學(xué)之美。圖中有的規(guī)

律顯而易見。例2讓學(xué)生計(jì)算規(guī)律算式的得數(shù)。

學(xué)生在計(jì)算的過(guò)程中發(fā)現(xiàn)加數(shù)的規(guī)律,即后一個(gè)加數(shù)是前一個(gè)加

數(shù)的L;和也有規(guī)律,每次相加所得的和等于1減去最后一個(gè)加數(shù);

2

加數(shù)的項(xiàng)數(shù)越多,和越接近1。這些加數(shù)無(wú)限地加下去,最后的和無(wú)

限接近于Io但這個(gè)無(wú)限接近于1的數(shù)到底是多少呢?教材利用“分

數(shù)的認(rèn)識(shí)”中的面積模型和長(zhǎng)度模型,在圓上和線段上表示出這些加

數(shù),使學(xué)生借助圖理解:無(wú)限加下去,最終的得數(shù)為1。學(xué)生在自主

探索圖形中隱藏著的數(shù)的規(guī)律,會(huì)利用圖形來(lái)解決一些有關(guān)數(shù)的問(wèn)題,

并學(xué)會(huì)應(yīng)用所發(fā)現(xiàn)的規(guī)律,體會(huì)和掌握數(shù)形結(jié)合、歸納推理、極限等

基本數(shù)學(xué)思想。

四、課時(shí)安排

第一課時(shí):數(shù)與形例1

第二課時(shí):數(shù)與形例2

第八單元第1課時(shí)數(shù)學(xué)廣角-數(shù)與形(一)教學(xué)設(shè)計(jì)

學(xué)校授課班級(jí)授課教師

1.引導(dǎo)學(xué)生觀察、發(fā)現(xiàn)、歸納、總結(jié)規(guī)律,經(jīng)歷4策究數(shù)形結(jié)合的學(xué)習(xí)過(guò)程,

滲透數(shù)形結(jié)合的思想。

2.讓學(xué)生經(jīng)歷從特殊到一般的思維過(guò)程,培養(yǎng)學(xué),主提出問(wèn)題、分析問(wèn)題和解

學(xué)習(xí)目標(biāo)

決問(wèn)題的能力。

3.體會(huì)數(shù)與形之間的密切聯(lián)系,感受數(shù)學(xué)知識(shí)的.奧妙,培養(yǎng)學(xué)生熱愛科學(xué)勇

于探索的精神。

K在數(shù)與形之間建立聯(lián)系,發(fā)現(xiàn)規(guī)律,能正確地運(yùn)用規(guī)律解決問(wèn)題。

難點(diǎn)積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),經(jīng)歷探索規(guī)律和驗(yàn)證規(guī)律的過(guò)程。

高年級(jí)學(xué)生的邏輯思維能力已有一定程度的發(fā)展,但仍以形象思維為

主。為了使學(xué)生更直觀地理解知識(shí),同時(shí)又滿足學(xué)生邏輯思維能力的發(fā)展,

教材在編排上體現(xiàn)了先“數(shù)"后"形'’的順序,把形象真正放在“支撐”地位,從

學(xué)情分析

而為培養(yǎng)學(xué)生的邏輯思維能力而服務(wù)。教學(xué)中,在尊重學(xué)生思維發(fā)展規(guī)律的

基礎(chǔ)上,以數(shù)的運(yùn)算為載體,使學(xué)生在數(shù)學(xué)學(xué)習(xí)中體驗(yàn)數(shù)形結(jié)合思想,最終

自覺地運(yùn)用數(shù)學(xué)思想解決生活中的數(shù)學(xué)問(wèn)題。

核心素養(yǎng)建立數(shù)與形之間的聯(lián)系,體會(huì)樹形結(jié)合思想,發(fā)展抽象思維。

教學(xué)輔助教學(xué)課件、學(xué)習(xí)任務(wù)單、(若有教具等教師自行增加)

教學(xué)流程

學(xué)習(xí)任務(wù)一:通過(guò)觀察、發(fā)現(xiàn)、歸納、發(fā)現(xiàn)圖形中隱藏的數(shù)的規(guī)律。

【設(shè)計(jì)意圖:考察學(xué)生的觀察能力,吸引注意力,快速進(jìn)入本節(jié)課的探究活動(dòng)中。將例題進(jìn)

行改編,讓問(wèn)題變得更加開放,引發(fā)學(xué)生自主探究。以挑戰(zhàn)性問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣,

培養(yǎng)學(xué)生學(xué)習(xí)的主動(dòng)性和對(duì)問(wèn)題的探究意識(shí),通過(guò)觀察發(fā)現(xiàn)圖形中隱藏的規(guī)律?!?/p>

4情境導(dǎo)入,引“探究”

教師談話導(dǎo)入:同學(xué)們,在生活中,我們都有很敏銳的觀察力,能發(fā)現(xiàn)生活中的很多不同,

今天老師來(lái)看看大家的觀察力。(課件出示2組圖片,每組圖片中都有一個(gè)和其它的圖片的

構(gòu)成有區(qū)別。)

第一組:口一。O◎第4個(gè)

第二組:第3個(gè)。

1.學(xué)生通過(guò)觀察,說(shuō)出自己的答案和判斷理由。

2.總結(jié):觀察圖形的特點(diǎn)要抓住規(guī)律,仔細(xì)觀察,分析獲得。

O知識(shí)鏈接,構(gòu)“聯(lián)系”

按要求完成下題。

1.觀察下面圖形,說(shuō)一說(shuō)圖形中包含的什么數(shù)學(xué)問(wèn)題?怎樣解答。

OoO

OOoOa000

列式計(jì)算:16—9=7(總結(jié):有時(shí),圖形中包含有“數(shù)”問(wèn)題。)

2.把一根木棍鋸成5段一共用了4分鐘。鋸一次平均要用多少分鐘?

第1次第2次

第1段第2段第3段

列式計(jì)算:4÷4=1(分鐘)(總結(jié):有些“數(shù)”問(wèn)題借助圖形來(lái)分析,顯得直觀,更容易解答。)

這節(jié)課我們繼續(xù)來(lái)探究數(shù)形結(jié)合的問(wèn)題。

O新知探究,習(xí)“方法”

教師課件展示:教材第104頁(yè)例題1的中的三個(gè)圖形。引導(dǎo)學(xué)生觀察圖形,思考:

一、學(xué)生獨(dú)立自學(xué),教師觀察指導(dǎo)。

I.觀察這組圖形,說(shuō)一說(shuō)它們之間有什么規(guī)律?

2.能用數(shù)或式子表示你發(fā)現(xiàn)的規(guī)律。

二、學(xué)生發(fā)言,教師總結(jié)

1.學(xué)生通過(guò)直觀的觀察可以得出規(guī)律:

(I)規(guī)律一

每組圖形小正方的個(gè)數(shù):1,4,9(說(shuō)一說(shuō)每個(gè)數(shù)字表示的含義)

(2)規(guī)律二

每組圖形小正方的式子表示:1X1,2x2,3x3(說(shuō)一說(shuō)每個(gè)式子表示的含義)

(3)規(guī)律三

每組圖形小正方的式子表示:1,1+3,1+3+5(說(shuō)一說(shuō)這個(gè)規(guī)律又表示什么?)

2.根據(jù)上面觀察圖形總結(jié)的規(guī)律,填上合適的數(shù)。

1=()2,1+3=()2,1+3+5=()2

提問(wèn):觀察這三個(gè)算式,你有什么發(fā)現(xiàn)?圖形和算式什么關(guān)系呢?

我發(fā)現(xiàn),算式左邊的加數(shù)是每個(gè)正方形圖左下角的小正方形和其他"1”形圖中

所包含的小正方形個(gè)數(shù)之和,正好等于每個(gè)正方形圖中每列小正方形個(gè)數(shù)的平方。

學(xué)習(xí)任務(wù)二:探索規(guī)律并驗(yàn)證規(guī)律。會(huì)利用圖形來(lái)解決一些有關(guān)數(shù)的問(wèn)題。

【設(shè)計(jì)意圖:充分地觀察,感受如何將數(shù)和形結(jié)合,體會(huì)數(shù)和形質(zhì)檢的緊密聯(lián)系,同時(shí)讓學(xué)

生感受到形可以展示數(shù)的特點(diǎn)。在充分的交流后,學(xué)生自然得到算式之間的對(duì)應(yīng)關(guān)系,建立

數(shù)與形的一一對(duì)應(yīng)的關(guān)系,從圖形的角度直觀地理解正方形數(shù)的特點(diǎn)。】

一、學(xué)生分組自學(xué),教師觀察指導(dǎo)

1.想一想,按照這樣的規(guī)律“圖4”會(huì)是什么樣子?有兒個(gè)這樣的小正方形?

2.同桌兩人合作,仿照前面的算式,一人說(shuō)等號(hào)左邊部分,一人說(shuō)等號(hào)右邊部分。

提示:有困難的可以在練習(xí)本上畫一畫圖。

3.利用規(guī)律解決問(wèn)題。

二、學(xué)生發(fā)言,教師總結(jié)

小組合作學(xué)習(xí)成果匯報(bào):

學(xué)生動(dòng)手畫出第四個(gè)圖形,寫出算式:1+3+5+7=42=16

仔細(xì)觀察四個(gè)式子,探究圖形和算式有什么關(guān)系?說(shuō)一說(shuō)你的發(fā)現(xiàn),并用自己的語(yǔ)言解釋規(guī)

律。

圖形:每一個(gè)圖形的個(gè)數(shù)正好等于從左下角加上其它形圖中所包含的個(gè)數(shù)。

算式:從1開始的連續(xù)奇數(shù)的和正好是這串?dāng)?shù)個(gè)數(shù)的平方。

數(shù)形結(jié)合

4.應(yīng)用規(guī)律從正向和逆向解決問(wèn)題。

1+3+5+7+9+11+13=()2

1+2+3+4+5+6+7+6+5+4+3+2+1=()2

______________________________=92

提問(wèn):這些算式對(duì)應(yīng)的圖形是什么樣的?

第一個(gè)算式是從1開始,7個(gè)連續(xù)奇數(shù)相加,和就是72。

第二個(gè)算式是從1開始,7個(gè)連續(xù)自然數(shù)相加,再加回到1,和就是72。

第三個(gè)算式結(jié)果是92,可以從兩方面考慮,補(bǔ)全算式。

學(xué)習(xí)任務(wù)三:通過(guò)分層練習(xí),鞏固利用數(shù)形結(jié)合的方法解決問(wèn)題的能力

【設(shè)計(jì)意圖:在應(yīng)用規(guī)律解決問(wèn)題的過(guò)程中,鼓勵(lì)學(xué)生充分的動(dòng)手、動(dòng)口、動(dòng)腦,順利解決

問(wèn)題,活動(dòng)探索樂(lè)趣。學(xué)生利用數(shù)形對(duì)照,說(shuō)出圖的變化規(guī)律,并探究對(duì)應(yīng)的數(shù)的規(guī)律,從

而利用發(fā)現(xiàn)的規(guī)律解決問(wèn)題?!?/p>

O達(dá)標(biāo)練習(xí),活“應(yīng)用”

一、課堂練習(xí)

1.請(qǐng)你根據(jù)例1的結(jié)論算一算。

1+3+5+7+5+3+1=()

1+3+5+7+9+11+13+11+9+7+5+3+1=()

2.下面每個(gè)圖中各有多少個(gè)綠色小正方形和多少個(gè)藍(lán)色小正方形?

二、學(xué)以致用

3.下面每個(gè)圖中最外圈各有多少個(gè)小正方形?

三、能力拓展

4.

f?∕Λf?fX49%G

?tir‰r?Jχv‰r?F

1??10

請(qǐng)你根據(jù)上面圖形與數(shù)的規(guī)律接著畫一畫,填一填。

□□□

4作業(yè)布置,拓“延伸”

【作業(yè)設(shè)計(jì)】

1.完成課件上作業(yè)內(nèi)容。

2.完成《分層作業(yè)》。

【板書設(shè)計(jì)】

數(shù)與形(1)

I=Ixl=I2

1+3=2x2=22

1+3+5=3x3=32

l+3+5+7=4?

1+3+5+7+9+11+13=72

從1開始,幾個(gè)連續(xù)奇數(shù)相加,和即是幾的平方。

第八單元第2課時(shí)數(shù)學(xué)廣角-數(shù)與形(2)教學(xué)設(shè)計(jì)

學(xué)校授課班級(jí)授課教師

1.結(jié)合具體事例理I解數(shù)形結(jié)合的思想方法,運(yùn)用數(shù)形結(jié)合的方法;睬索規(guī)律,幫

助計(jì)算,解決實(shí)辦示問(wèn)題。

學(xué)習(xí)目標(biāo)2.經(jīng)歷均分結(jié)果赳±來(lái)越接近單位“1”的過(guò)程,感悟極限思想。

3.在解決實(shí)際問(wèn)翅!的過(guò)程中,體會(huì)數(shù)與形之間的密切聯(lián)系,感受落攵學(xué)知識(shí)的奧

妙,激發(fā)學(xué)習(xí)數(shù)士云的興趣。

讓學(xué)生經(jīng)歷觀察、操作、歸納等活動(dòng),幫助學(xué)生借助“形”來(lái)直觀感受與“數(shù)”

重點(diǎn)

之間的關(guān)系。

體會(huì)有時(shí)“形''與"數(shù)”能互相解釋,并能借助“形”解決一些與“數(shù)”有關(guān)的問(wèn)

難點(diǎn)

題。

學(xué)生第一次正式講解數(shù)形結(jié)合思想,教材題目設(shè)計(jì)巧妙,在觀察圖形

發(fā)現(xiàn)規(guī)律中,需要具有一定的觀察發(fā)現(xiàn)能力;在動(dòng)手畫圖上,有需要具有

學(xué)情分析

一定的動(dòng)手畫圖的能力。這兩方面都要求思維活躍,大膽猜想,六年級(jí)的

學(xué)生已經(jīng)具備了這些能力。

核心素養(yǎng)建立數(shù)與形之間的聯(lián)系,體會(huì)樹形結(jié)合思想,體會(huì)極限思想。

教學(xué)輔助教學(xué)課件、學(xué)習(xí)任務(wù)單、(若有教具等教師自行增加)

教學(xué)流程

學(xué)習(xí)任務(wù)一:通過(guò)算式計(jì)算,發(fā)現(xiàn)算式中隱藏的數(shù)的規(guī)律,猜測(cè)算式結(jié)果。

【設(shè)計(jì)意圖:從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),帶領(lǐng)學(xué)生復(fù)習(xí)異分母分?jǐn)?shù)相加的計(jì)算方法,為本

節(jié)課新知的計(jì)算做了鋪墊。主張學(xué)生自主探究,讓學(xué)生通過(guò)觀察發(fā)現(xiàn)算式中的數(shù)字存在著一

定的規(guī)律,培養(yǎng)了學(xué)生勤于動(dòng)腦的好習(xí)慣。】

4情境導(dǎo)入,引“探究”

教師談話導(dǎo)入:同學(xué)們,你們認(rèn)識(shí)華羅庚爺爺,他是我國(guó)偉大的數(shù)學(xué)家,為數(shù)學(xué)學(xué)科的發(fā)展

做出了突出的貢獻(xiàn),特別是將數(shù)學(xué)應(yīng)用到生活領(lǐng)域。

數(shù)缺形時(shí)少直觀,

形少數(shù)時(shí)難入微,

數(shù)形結(jié)合百般好,

割裂分家萬(wàn)事休。

華羅庚爺爺做的這首小詩(shī)就是講“數(shù)形結(jié)合”這個(gè)問(wèn)題的。這節(jié)課我們一起來(lái)學(xué)習(xí)數(shù)學(xué)結(jié)合的

知識(shí)。

O知識(shí)鏈接,構(gòu)“聯(lián)系”

觀察下面算式特點(diǎn)并計(jì)算結(jié)果,說(shuō)一說(shuō)需要注意什么?

-1+--1-1-+1-

2435

11111

—H------—I■一+--

816248

1.學(xué)生動(dòng)手計(jì)算,總結(jié)計(jì)算方法。

2.思考:說(shuō)一說(shuō)計(jì)算時(shí)需要注意什么?

我們已經(jīng)學(xué)習(xí)了數(shù)與形的第一個(gè)例子,知道了一些有規(guī)律的圖形可以變成算式讓我們來(lái)解決

問(wèn)題。那么今天我們還是繼續(xù)來(lái)學(xué)習(xí)數(shù)與形的第二個(gè)例子,讓我們來(lái)看看數(shù)與形之間還可以

有怎么樣的轉(zhuǎn)化。

4新知探究,習(xí)“方法”

(-)分步計(jì)算,找到規(guī)律

教學(xué)例2,出示:2+4+8+16+32+64

一、學(xué)生獨(dú)立自學(xué),教師觀察指導(dǎo)。

1.觀察算式中加數(shù)的特點(diǎn),你有什么發(fā)現(xiàn)?

2.算式中的省略號(hào)是什么意思?

3.分步算一算,你有什么發(fā)現(xiàn)?

4.大膽猜測(cè)一下,這個(gè)算式的結(jié)果會(huì)是多少?

二、學(xué)生發(fā)言,教師總結(jié)

IlllI1

2+4+8+T6+32+64+…

觀察式子,找到每個(gè)加數(shù)的特點(diǎn)。從第二個(gè)數(shù)開始,每個(gè)數(shù)是前一個(gè)數(shù)的I,

依次計(jì)算可得:

1133177

-+---^--+

24=440=88

發(fā)現(xiàn):(1)結(jié)果越來(lái)越接近于1,且分子分母相差1;(2)結(jié)果和等號(hào)左邊最后一個(gè)加數(shù)

的和是1。

提問(wèn):像這樣一直加下去,會(huì)有什么樣的結(jié)果呢?

大膽猜測(cè):2+4+8+?+?+M+…=1

學(xué)習(xí)任務(wù)二:運(yùn)用數(shù)形結(jié)合的方法探索規(guī)律,幫助計(jì)算,解決實(shí)際問(wèn)題。

【設(shè)計(jì)意圖:學(xué)生自己動(dòng)手試著畫一畫這個(gè)算式對(duì)應(yīng)的圖形,可以讓學(xué)生直觀感受到這個(gè)算

式如果一直加下去的話,它相對(duì)應(yīng)的圖形就可以取到它的極限值"1”。]

++

利用樹形結(jié)合的方法驗(yàn)證猜測(cè):9÷I+Q?+?÷???.=1

一、學(xué)生分組自學(xué),教師觀察指導(dǎo)

L從上面的3個(gè)圖形中任選一個(gè),然后在你選擇的圖形中找到它的L,在L的基

22

礎(chǔ)上加上它的?,再加上它的?,按算式的要求一直加下去,看看能不能找到和是

48

多少?

2.學(xué)生動(dòng)手畫圖驗(yàn)證,教師相機(jī)課件展示指導(dǎo)。

二、學(xué)生發(fā)言,教師總結(jié)

1.借助圓探究計(jì)算方法。

課件出示一個(gè)圓,演示并講解。

想象一下,我們一直加下去,圖中空白部分的面積就越來(lái)越小,涂色部分的面積越來(lái)越接

近1,也就是求和的得數(shù)無(wú)限接近1。

2..利用線段圖來(lái)直觀感受。

讓學(xué)生看教材第108頁(yè)線段圖進(jìn)一步感受。

全班交流,得出結(jié)論:這些分?jǐn)?shù)不斷加下去,總和就是1。

3.想一想:對(duì)于這種借用圖形來(lái)幫助我們解決問(wèn)題的方法,有什么好處?(自由發(fā)言,也

可舉出以往用過(guò)的例子。)

學(xué)習(xí)任務(wù)三:通過(guò)分層練習(xí),體會(huì)有時(shí)“形”與“數(shù)”能互相解釋,并能借助“形”解

決一些與“數(shù)”有關(guān)的問(wèn)題。

【設(shè)計(jì)意圖:通過(guò)練習(xí),回顧新知,鞏固新知,使學(xué)生對(duì)新知識(shí)掌握得更扎實(shí),同時(shí)讓學(xué)生

進(jìn)一步體會(huì)數(shù)形結(jié)合的直觀性和變難為易的特點(diǎn)?!?/p>

O達(dá)標(biāo)練習(xí),活“應(yīng)用”

二、課堂練習(xí)

1.快速計(jì)算。

T^7-^8-16

2.運(yùn)用所學(xué)知識(shí)解決下列問(wèn)題。

2222

392781

二、學(xué)以致用

3.下面每個(gè)三角形圖各是多少個(gè)小三角形組成的?如果小三角形的邊長(zhǎng)為1,每個(gè)三角形圖

的周長(zhǎng)分別是多少?每個(gè)三角形包含小三角形的個(gè)數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論