




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省萊蕪市2023-2024學年高三最后一模數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.2.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.3.某公園新購進盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.4.某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種5.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當時,(其中e是自然對數(shù)的底數(shù)),若,則實數(shù)a的值為()A. B.3 C. D.6.用數(shù)學歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+17.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.8.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或79.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.1910.已知集合,若,則實數(shù)的取值范圍為()A. B. C. D.11.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.12.設全集為R,集合,,則A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則________.(填“>”或“=”或“<”).14.已知,則的值為______.15.不等式對于定義域內的任意恒成立,則的取值范圍為__________.16.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現(xiàn)從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯(lián)表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)18.(12分)(江蘇省徐州市高三第一次質量檢測數(shù)學試題)在平面直角坐標系中,已知平行于軸的動直線交拋物線:于點,點為的焦點.圓心不在軸上的圓與直線,,軸都相切,設的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為,直線,分別與軸相交于點,.當線段的長度最小時,求的值.19.(12分)已知,如圖,曲線由曲線:和曲線:組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.(Ⅰ)若,求曲線的方程;(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸近線上;(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求面積的最大值.20.(12分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.(1)求的分布列及數(shù)學期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數(shù)的取值范圍.21.(12分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.22.(10分)己知函數(shù).(1)當時,求證:;(2)若函數(shù),求證:函數(shù)存在極小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據指數(shù)函數(shù)的單調性,結合特殊值進行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當m,n時,檢驗可得,A、C、D都不正確,故選:B.【點睛】此題考查根據指數(shù)冪的大小關系判斷參數(shù)的大小,根據參數(shù)的大小判定指數(shù)冪或對數(shù)的大小關系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質,結合特值法得出選項.2、A【解析】
畫出約束條件的可行域,利用目標函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規(guī)劃的應用,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.3、B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開有,扣除郁金香在兩邊有,即可求出結論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個位置中有種,根據分步乘法計數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個位置中有,根據分步計數(shù)原理有,所以共有種.故選:B.【點睛】本題考查排列應用問題、分步乘法計數(shù)原理,不相鄰問題插空法是解題的關鍵,屬于中檔題.4、B【解析】
根據條件2名內科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于常考題型.5、B【解析】
根據題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個以4為周期的周期函數(shù),所以,解得,故選:B.【點睛】本題考查函數(shù)周期的求解,涉及對數(shù)運算,屬綜合基礎題.6、C【解析】
首先分析題目求用數(shù)學歸納法證明1+1+3+…+n1=n4【詳解】當n=k時,等式左端=1+1+…+k1,當n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點睛】本題主要考查數(shù)學歸納法,屬于中檔題./7、D【解析】
集合.為自然數(shù)集,由此能求出結果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關系、集合與集合的關系等基礎知識,考查運算求解能力,是基礎題.8、C【解析】
根據平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎題.9、B【解析】
計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關計算,意在考查學生的計算能力和對于數(shù)列公式方法的綜合應用.10、A【解析】
解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據可以得到集合、之間的關系,結合數(shù)軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學運算能力.11、A【解析】
將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬于較難題.12、B【解析】分析:由題意首先求得,然后進行交集運算即可求得最終結果.詳解:由題意可得:,結合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉化能力和計算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點睛】本題考查對數(shù)式比較大小,涉及到換底公式的應用,考查學生的數(shù)學運算能力,是一道中檔題.14、【解析】
先求,再根據的范圍求出即可.【詳解】由題可知,故.故答案為:.【點睛】本題考查分段函數(shù)函數(shù)值的求解,涉及對數(shù)的運算,屬基礎題.15、【解析】
根據題意,分離參數(shù),轉化為只對于內的任意恒成立,令,則只需在定義域內即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內的任意恒成立,即對于內的任意恒成立,令,則只需在定義域內即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調遞增,又,,使得,,則,所以的取值范圍為.故答案為:.【點睛】本題考查利用導數(shù)研究函數(shù)單調性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉化能力和計算能力.16、【解析】
畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據題意三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系【解析】
(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據表格數(shù)據填寫列聯(lián)表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數(shù)為.完善列聯(lián)表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,,不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【點睛】本小題主要考查根據頻率分布直方圖計算小長方形的高,考查列聯(lián)表獨立性檢驗,屬于基礎題.18、(1).(2)見解析.【解析】試題分析:(1)設根據題意得到,化簡得到軌跡方程;(2)設,,,,構造函數(shù)研究函數(shù)的單調性,得到函數(shù)的最值.解析:(1)因為拋物線的方程為,所以的坐標為,設,因為圓與軸、直線都相切,平行于軸,所以圓的半徑為,點,則直線的方程為,即,所以,又,所以,即,所以的方程為.(2)設,,,由(1)知,點處的切線的斜率存在,由對稱性不妨設,由,所以,,所以,,所以.令,,則,由得,由得,所以在區(qū)間單調遞減,在單調遞增,所以當時,取得極小值也是最小值,即取得最小值,此時.點睛:求軌跡方程,一般是問誰設誰的坐標然后根據題目等式直接求解即可,而對于直線與曲線的綜合問題要先分析題意轉化為等式,例如,可以轉化為向量坐標進行運算也可以轉化為斜率來理解,然后借助韋達定理求解即可運算此類題計算一定要仔細.19、(Ⅰ)和.;(Ⅱ)證明見解析;(Ⅲ).【解析】
(Ⅰ)由,可得,解出即可;(Ⅱ)設點,設直線,與橢圓方程聯(lián)立可得:,利用,根與系數(shù)的關系、中點坐標公式,證明即可;(Ⅲ)由(Ⅰ)知,曲線,且,設直線的方程為:,與橢圓方程聯(lián)立可得:,利用根與系數(shù)的關系、弦長公式、三角形的面釈計算公式、基本不等式的性質,即可求解.【詳解】(Ⅰ)由題意:,,解得,則曲線的方程為:和.(Ⅱ)證明:由題意曲線的漸近線為:,設直線,則聯(lián)立,得,,解得:,又由數(shù)形結合知.設點,則,,,,,即點在直線上.(Ⅲ)由(Ⅰ)知,曲線,點,設直線的方程為:,聯(lián)立,得:,,設,,,,面積,令,,當且僅當,即時等號成立,所以面積的最大值為.【點睛】本題考查了橢圓與雙曲線的標準方程及其性質、直線與橢圓的相交問題、弦長公式、三角形的面積計算公式、基本不等式的性質,考查了推理論證能力與運算求解能力,屬于難題.20、(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數(shù)學期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.21、(1)見證明;(2)【解析】
(1)取的中點,連接,要證平面平面,轉證平面,即證,即可;(2)以為坐標原點,以為軸正方向,建立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 34874.4-2025產品幾何技術規(guī)范(GPS)X射線三維尺寸測量機第4部分:測量不確定度評定
- 住人活動房租賃合同
- 廣告服務代理合同協(xié)議書
- 土石方開挖工程合同
- 建筑施工單項承包合同
- 施工合同土方工程施工合同
- 銷售秧苗合同
- 變電站工程施工合同
- 擔保補充合同協(xié)議書
- 書法培訓合同協(xié)議
- 語音廳策劃方案
- 宴會設計與管理(高職)全套教學課件
- 《唐朝皇帝列表》課件
- 阿莫西林生產工藝規(guī)程
- 中華八大菜系-閩菜
- 山東省威海市2022年中考地理試題
- 中國古典民族樂器分類琵琶二胡樂理文化傳承知識介紹實用課件兩篇
- 保安外包服務投標方案(技術標)
- 2023年浙江杭州市屬事業(yè)單位統(tǒng)一招聘工作人員371人筆試參考題庫(共500題)答案詳解版
- 國家開放大學《人文英語3》章節(jié)測試參考答案
- 江蘇省四星級高中評估標準及評價細則
評論
0/150
提交評論