版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
./三角形中做輔助線的技巧口訣:三角形圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。線段和差及倍半,延長(zhǎng)縮短可試驗(yàn)。線段和差不等式,移到同一三角去。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中線。由角平分線想到的輔助線口訣:圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。角平分線具有兩條性質(zhì):a、對(duì)稱性;b、角平分線上的點(diǎn)到角兩邊的距離相等。對(duì)于有角平分線的輔助線的作法,一般有兩種。①從角平分線上一點(diǎn)向兩邊作垂線;②利用角平分線,構(gòu)造對(duì)稱圖形〔如作法是在一側(cè)的長(zhǎng)邊上截取短邊。通常情況下,出現(xiàn)了直角或是垂直等條件時(shí),一般考慮作垂線;其它情況下考慮構(gòu)造對(duì)稱圖形。至于選取哪種方法,要結(jié)合題目圖形和已知條件。與角有關(guān)的輔助線〔一、截取構(gòu)全等如圖1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,點(diǎn)E在AD上,求證:BC=AB+CD。已知:如圖1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求證:AB-AC=CD分析:此題的條件中還有角的平分線,在證明中還要用到構(gòu)造全等三角形,此題還是證明線段的和差倍分問題。用到的是截取法來證明的,在長(zhǎng)的線段上截取短的線段,來證明。試試看可否把短的延長(zhǎng)來證明呢?〔二、角分線上點(diǎn)向角兩邊作垂線構(gòu)全等過角平分線上一點(diǎn)向角兩邊作垂線,利用角平分線上的點(diǎn)到兩邊距離相等的性質(zhì)來證明問題。如圖2-1,已知AB>AD,∠BAC=∠FAC,CD=BC。求證:∠ADC+∠B=180分析:可由C向∠BAD的兩邊作垂線。近而證∠ADC與∠B之和為平角。已知如圖2-3,△ABC的角平分線BM、CN相交于點(diǎn)P。求證:∠BAC的平分線也經(jīng)過點(diǎn)P。分析:連接AP,證AP平分∠BAC即可,也就是證P到AB、AC的距離相等。練習(xí):1.如圖2-4∠AOP=∠BOP=15,PC//OA,PD⊥OA,如果PC=4,則PD=〔A4B3C2D12.已知:如圖2-6,在正方形ABCD中,E為CD的中點(diǎn),F為BC上的點(diǎn),∠FAE=∠DAE。求證:AF=AD+CF。3.已知:如圖2-7,在Rt△ABC中,∠ACB=90,CD⊥AB,垂足為D,AE平分∠CAB交CD于F,過F作FH//AB交BC于H。求證CF=BH?!踩鹤鹘瞧椒志€的垂線構(gòu)造等腰三角形從角的一邊上的一點(diǎn)作角平分線的垂線,使之與角的兩邊相交,則截得一個(gè)等腰三角形,垂足為底邊上的中點(diǎn),該角平分線又成為底邊上的中線和高,以利用中位線的性質(zhì)與等腰三角形的三線合一的性質(zhì)?!踩绻}目中有垂直于角平分線的線段,則延長(zhǎng)該線段與角的另一邊相交。已知:如圖3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中點(diǎn)。求證:DH=〔AB-AC分析:延長(zhǎng)CD交AB于點(diǎn)E,則可得全等三角形。問題可證。例2.已知:如圖3-2,AB=AC,∠BAC=90,AD為∠ABC的平分線,CE⊥BE.求證:BD=2CE。分析:給出了角平分線給出了邊上的一點(diǎn)作角平分線的垂線,可延長(zhǎng)此垂線與另外一邊相交,近而構(gòu)造出等腰三角形。例3.已知:如圖3-3在△ABC中,AD、AE分別∠BAC的內(nèi)、外角平分線,過頂點(diǎn)B作BFAD,交AD的延長(zhǎng)線于F,連結(jié)FC并延長(zhǎng)交AE于M。求證:AM=ME。分析:由AD、AE是∠BAC內(nèi)外角平分線,可得EA⊥AF,從而有BF//AE,所以想到利用比例線段證相等。已知:如圖3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延長(zhǎng)線于M。求證:AM=〔AB+AC分析:題設(shè)中給出了角平分線AD,自然想到以AD為軸作對(duì)稱變換,作△ABD關(guān)于AD的對(duì)稱△AED,然后只需證DM=EC,另外由求證的結(jié)果AM=〔AB+AC,即2AM=AB+AC,也可嘗試作△ACM關(guān)于CM的對(duì)稱△FCM,然后只需證DF=CF即可。練習(xí):已知:在△ABC中,AB=5,AC=3,D是BC中點(diǎn),AE是∠BAC的平分線,且CE⊥AE于E,連接DE,求DE。已知BE、BF分別是△ABC的∠ABC的內(nèi)角與外角的平分線,AF⊥BF于F,AE⊥BE于E,連接EF分別交AB、AC于M、N,求證MN=BC〔四、以角分線上一點(diǎn)做角的另一邊的平行線有角平分線時(shí),常過角平分線上的一點(diǎn)作角的一邊的平行線,從而構(gòu)造等腰三角形?;蛲ㄟ^一邊上的點(diǎn)作角平分線的平行線與另外一邊的反向延長(zhǎng)線相交,從而也構(gòu)造等腰三角形。如圖4-1和圖4-2所示。BDCA例1如圖,BC>BA,BD平分∠ABC,且AD=CD,求證:∠BDCAABECD例2如圖,AB∥CD,AE、DE分別平分ABECD練習(xí):1.已知,如圖,∠C=2∠A,AC=2BC。求證:△ABC是直角三角形。ABCD2.已知:如圖,AB=2AC,∠1=∠ABCDAEBAEBDCABDC12CAB3.已知CE、AD是△ABC的角平分線,∠B=60°,求證:AC=AE+CD4.已知:如圖在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分線,求證:BC=AB+AD二、由線段和差想到的輔助線口訣:線段和差及倍半,延長(zhǎng)縮短可試驗(yàn)。線段和差不等式,移到同一三角去。遇到求證一條線段等于另兩條線段之和時(shí),一般方法是截長(zhǎng)補(bǔ)短法:1、截長(zhǎng):在長(zhǎng)線段中截取一段等于另兩條中的一條,然后證明剩下部分等于另一條;2、補(bǔ)短:將一條短線段延長(zhǎng),延長(zhǎng)部分等于另一條短線段,然后證明新線段等于長(zhǎng)線段。對(duì)于證明有關(guān)線段和差的不等式,通常會(huì)聯(lián)系到三角形中兩線段之和大于第三邊、之差小于第三邊,故可想辦法放在一個(gè)三角形中證明。在利用三角形三邊關(guān)系證明線段不等關(guān)系時(shí),如直接證不出來,可連接兩點(diǎn)或廷長(zhǎng)某邊構(gòu)成三角形,使結(jié)論中出現(xiàn)的線段在一個(gè)或幾個(gè)三角形中,再運(yùn)用三角形三邊的不等關(guān)系證明,如:已知如圖1-1:D、E為△ABC內(nèi)兩點(diǎn),求證:AB+AC>BD+DE+CE.在利用三角形的外角大于任何和它不相鄰的內(nèi)角時(shí)如直接證不出來時(shí),可連接兩點(diǎn)或延長(zhǎng)某邊,構(gòu)造三角形,使求證的大角在某個(gè)三角形的外角的位置上,小角處于這個(gè)三角形的內(nèi)角位置上,再利用外角定理:例如:如圖2-1:已知D為△ABC內(nèi)的任一點(diǎn),求證:∠BDC>∠BAC。分析:因?yàn)椤螧DC與∠BAC不在同個(gè)三角形中,沒有直接的聯(lián)系,可適當(dāng)添加輔助線構(gòu)造新的三角形,使∠BDC處于在外角的位置,∠BAC處于在內(nèi)角的位置;注意:利用三角形外角定理證明不等關(guān)系時(shí),通常將大角放在某三角形的外角位置上,小角放在這個(gè)三角形的內(nèi)角位置上,再利用不等式性質(zhì)證明。有角平分線時(shí),通常在角的兩邊截取相等的線段,構(gòu)造全等三角形,如:例如:如圖3-1:已知AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF。分析:要證BE+CF>EF,可利用三角形三邊關(guān)系定理證明,須把BE,CF,EF移到同一個(gè)三角形中,而由已知∠1=∠2,∠3=∠4,可在角的兩邊截取相等的線段,利用三角形全等對(duì)應(yīng)邊相等,把EN,FN,EF移到同個(gè)三角形中。注意:當(dāng)證題有角平分線時(shí),??煽紤]在角的兩邊截取相等的線段,構(gòu)造全等三角形,然后用全等三角形的對(duì)應(yīng)性質(zhì)得到相等元素。三、截長(zhǎng)補(bǔ)短法作輔助線。例如:已知如圖6-1:在△ABC中,AB>AC,∠1=∠2,P為AD上任一點(diǎn)求證:AB-AC>PB-PC。分析:要證:AB-AC>PB-PC,想到利用三角形三邊關(guān)系,定理證之,因?yàn)橛C的線段之差,故用兩邊之差小于第三邊,從而想到構(gòu)造第三邊AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN,再連接PN,則PC=PN,又在△PNB中,PB-PN<BN,即:AB-AC>PB-PC。例1.如圖,AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求證:AE=AD+BE。DDAECB例2如圖,在四邊形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,求證:∠ADC+∠B=180o例3已知:如圖,等腰三角形ABC中,AB=AC,A=108°,BD平分ABC。DCDCBAMBDCA例4如圖,已知Rt△ABC中,∠ACB=90°,AD是∠CAB的平分線,DMMBDCA[夯實(shí)基礎(chǔ)]例:中,AD是的平分線,且BD=CD,求證AB=AC[方法精講]常用輔助線添加方法——倍長(zhǎng)中線△ABC中方式1:延長(zhǎng)AD到E,AD是BC邊中線使DE=AD,連接BE方式2:間接倍長(zhǎng)作CF⊥AD于F,延長(zhǎng)MD到N,作BE⊥AD的延長(zhǎng)線于E使DN=MD,連接BE連接CD[經(jīng)典例題]例1:△ABC中,AB=5,AC=3,求中線AD的取值范圍提示:畫出圖形,倍長(zhǎng)中線AD,利用三角形兩邊之和大于第三邊例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延長(zhǎng)線上,DE交BC于F,且DF=EF,求證:BD=CE方法1:過D作DG∥AE交BC于G,證明ΔDGF≌ΔCEF方法2:過E作EG∥AB交BC的延長(zhǎng)線于G,證明ΔEFG≌ΔDFB方法3:過D作DG⊥BC于G,過E作EH⊥BC的延長(zhǎng)線于H證明ΔBDG≌ΔECH例3:已知在△ABC中,AD是BC邊上的中線,E是AD上一點(diǎn),且BE=AC,延長(zhǎng)BE交AC于F,求證:AF=EF提示:倍長(zhǎng)AD至G,連接BG,證明ΔBDG≌ΔCDA三角形BEG是等腰三角形例4:已知:如圖,在中,,D、E在BC上,且DE=EC,過D作交AE于點(diǎn)F,DF=AC.求證:AE平分提示:方法1:倍長(zhǎng)AE至G,連結(jié)DG方法2:倍長(zhǎng)FE至H,連結(jié)CH例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中線,求證:∠C=∠BAE提示:倍長(zhǎng)AE至F,連結(jié)DF證明ΔABE≌ΔFDE〔SAS進(jìn)而證明ΔADF≌ΔADC〔SAS[融會(huì)貫通]1、在四邊形ABCD中,AB∥DC,E為BC邊的中點(diǎn),∠BAE=∠EAF,AF與DC的延長(zhǎng)線相交于點(diǎn)F。試探究線段AB與AF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論提示:延長(zhǎng)AE、DF交于G證明AB=GC、AF=GF所以AB=AF+FC2、如圖,AD為的中線,DE平分交AB于E,DF平分交AC于F.求證:提示:方法1:在DA上截取DG=BD,連結(jié)EG、FG證明ΔBDE≌ΔGDEΔDCF≌ΔDGF所以BE=EG、CF=FG利用三角形兩邊之和大于第三邊方法2:倍長(zhǎng)ED至H,連結(jié)CH、FH證明FH=EF、CH=BE利用三角形兩邊之和大于第三邊3、已知:如圖,ABC中,C=90,CMAB于M,AT平分BAC交CM于D,交BC于T,過D作DE//AB交BC于E,求證:CT=BE.提示:過T作TN⊥AB于N證明ΔBTN≌ΔECD四、由中點(diǎn)想到的輔助線口訣:三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長(zhǎng)中線等中線。在三角形中,如果已知一點(diǎn)是三角形某一邊上的中點(diǎn),那么首先應(yīng)該聯(lián)想到三角形的中線、中位線、加倍延長(zhǎng)中線及其相關(guān)性質(zhì)〔直角三角形斜邊中線性質(zhì)、等腰三角形底邊中線性質(zhì),然后通過探索,找到解決問題的方法。〔一、中線把原三角形分成兩個(gè)面積相等的小三角形即如圖1,AD是ΔABC的中線,則SΔABD=SΔACD=SΔABC〔因?yàn)棣BD與ΔACD是等底同高的。例1.如圖2,ΔABC中,AD是中線,延長(zhǎng)AD到E,使DE=AD,DF是ΔDCE的中線。已知ΔABC的面積為2,求:ΔCDF的面積。解:因?yàn)锳D是ΔABC的中線,所以SΔACD=SΔABC=×2=1,又因CD是ΔACE的中線,故SΔCDE=SΔACD=1,因DF是ΔCDE的中線,所以SΔCDF=SΔCDE=×1=?!唳DF的面積為?!捕?、由中點(diǎn)應(yīng)想到利用三角形的中位線例2.如圖3,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點(diǎn),BA、CD的延長(zhǎng)線分別交EF的延長(zhǎng)線G、H。求證:∠BGE=∠CHE。證明:連結(jié)BD,并取BD的中點(diǎn)為M,連結(jié)ME、MF,∵M(jìn)E是ΔBCD的中位線,∴MECD,∴∠MEF=∠CHE,∵M(jìn)F是ΔABD的中位線,∴MFAB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,從而∠BGE=∠CHE。〔三、由中線應(yīng)想到延長(zhǎng)中線例3.圖4,已知ΔABC中,AB=5,AC=3,連BC上的中線AD=2,求BC的長(zhǎng)。解:延長(zhǎng)AD到E,使DE=AD,則AE=2AD=2×2=4。在ΔACD和ΔEBD中,
∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,從而BE=AC=3。在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2。例4.如圖5,已知ΔABC中,AD是∠BAC的平分線,AD又是BC邊上的中線。求證:ΔABC是等腰三角形。證明:延長(zhǎng)AD到E,使DE=AD。仿例3可證:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,從而AB=AC,即ΔABC是等腰三角形?!菜摹⒅苯侨切涡边呏芯€的性質(zhì)例5.如圖6,已知梯形ABCD中,AB//DC,AC⊥BC,AD⊥BD,求證:AC=BD。證明:取AB的中點(diǎn)E,連結(jié)DE、CE,則DE、CE分別為RtΔABD,RtΔABC斜邊AB上的中線,故DE=CE=AB,因此∠CDE=∠DCE?!逜B//DC,∴∠CDE=∠1,∠DCE=∠2,∴∠1=∠2,在ΔADE和ΔBCE中,∵DE=CE,∠1=∠2,AE=BE,∴ΔADE≌ΔBCE,∴AD=BC,從而梯形ABCD是等腰梯形,因此AC=BD。〔五、角平分線且垂直一線段,應(yīng)想到等腰三角形的中線例6.如圖7,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于點(diǎn)D,CE垂直于BD,交BD的延長(zhǎng)線于點(diǎn)E。求證:BD=2CE。證明:延長(zhǎng)BA,CE交于點(diǎn)F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,從而CF=2CE。又∠1+∠F=∠3+∠F=90°,故∠1=∠3。在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。注:此例中BE是等腰ΔBCF的底邊CF的中線?!擦芯€延長(zhǎng)口訣:三角形中有中線,延長(zhǎng)中線等中線。題目中如果出現(xiàn)了三角形的中線,常延長(zhǎng)加倍此線段,再將端點(diǎn)連結(jié),便可得到全等三角形。例一:如圖4-1:AD為△ABC的中線,且∠1=∠2,∠3=∠4,求證:BE+CF>EF。證明:廷長(zhǎng)ED至M,使DM=DE,連接CM,MF。在△BDE和△CDM中,BD=CD〔中點(diǎn)定義∠1=∠5〔對(duì)頂角相等ED=MD〔輔助線作法∴△BDE≌△CDM〔SAS又∵∠1=∠2,∠3=∠4〔已知∠1+∠2+∠3+∠4=180°〔平角的定義∴∠3+∠2=90°即:∠EDF=90°∴∠FDM=∠EDF=90°在△EDF和△MDF中ED=MD〔輔助線作法∠EDF=∠FDM〔已證DF=DF〔公共邊∴△EDF≌△MDF〔SAS∴EF=MF〔全等三角形對(duì)應(yīng)邊相等∵在△CMF中,CF+CM>MF〔三角形兩邊之和大于第三邊∴BE+CF>EF上題也可加倍FD,證法同上。注意:當(dāng)涉及到有以線段中點(diǎn)為端點(diǎn)的線段時(shí),可通過延長(zhǎng)加倍此線段,構(gòu)造全等三角形,使題中分散的條件集中。例二:如圖5-1:AD為△ABC的中線,求證:AB+AC>2AD。分析:要證AB+AC>2AD,由圖想到:AB+BD>AD,AC+CD>AD,所以有AB+AC+BD+CD>AD+AD=2AD,左邊比要證結(jié)論多BD+CD,故不能直接證出此題,而由2AD想到要構(gòu)造2AD,即加倍中線,把所要證的線段轉(zhuǎn)移到同一個(gè)三角形中去證明:延長(zhǎng)AD至E,使DE=AD,連接BE,CE∵AD為△ABC的中線〔已知∴BD=CD〔中線定義在△ACD和△EBD中BD=CD〔已證∠1=∠2〔對(duì)頂角相等AD=ED〔輔助線作法∴△ACD≌△EBD〔SAS∴BE=CA〔全等三角形對(duì)應(yīng)邊相等∵在△ABE中有:AB+BE>AE〔三角形兩邊之和大于第三邊∴AB+AC>2AD。練習(xí):DMDMCDEDADBDBEBECDABADC862如圖,AB=CD,E為BC的中點(diǎn),∠BAC=∠BCA,求證:AD=2AE。3如圖,AB=AC,AD=AE,M為BE中點(diǎn),∠BAC=∠DAE=90°。求證:AM⊥DC。4,已知△ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向外作等腰直角三角形,如圖5-2,求證EF=2AD。AABDCEF5.已知:如圖AD為△ABC的中線,AE=EF,求證:BF=AC常見輔助線的作法有以下幾種:遇到等腰三角形,可作底邊上的高,利用"三線合一"的性質(zhì)解題,思維模式是全等變換中的"對(duì)折".遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的"旋轉(zhuǎn)".遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的"對(duì)折",所考知識(shí)點(diǎn)常常是角平分線的性質(zhì)定理或逆定理.過圖形上某一點(diǎn)作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的"平移"或"翻轉(zhuǎn)折疊"截長(zhǎng)法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長(zhǎng),是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目.特殊方法:在求有關(guān)三角形的定值一類的問題時(shí),常把某點(diǎn)到原三角形各頂點(diǎn)的線段連接起來,利用三角形面積的知識(shí)解答.〔一、倍長(zhǎng)中線〔線段造全等1:〔"希望杯"試題已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是_________.2:如圖,△ABC中,E、F分別在AB、AC上,DE⊥DF,D是中點(diǎn),試比較BE+CF與EF的大小.3:如圖,△ABC中,BD=DC=AC,E是DC的中點(diǎn),求證:AD平分∠BAE.中考應(yīng)用〔09崇文二模以的兩邊AB、AC為腰分別向外作等腰Rt和等腰Rt,連接DE,M、N分別是BC、DE的中點(diǎn).探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系.〔1如圖①當(dāng)為直角三角形時(shí),AM與DE的位置關(guān)系是,線段AM與DE的數(shù)量關(guān)系是;〔2將圖①中的等腰Rt繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn)<0<<90>后,如圖②所示,〔1問中得到的兩個(gè)結(jié)論是否發(fā)生改變?并說明理由.〔二、截長(zhǎng)補(bǔ)短1.如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC2:如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過點(diǎn)E,求證;AB=AC+BD3:如圖,已知在內(nèi),,,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP4:如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分,求證:5:如圖在△ABC中,AB>AC,∠1=∠2,P為AD上任意一點(diǎn),求證;AB-AC>PB-PC中考應(yīng)用〔08海淀一模例題講解:一、利用轉(zhuǎn)化倍角,構(gòu)造等腰三角形當(dāng)一個(gè)三角形中出現(xiàn)一個(gè)角是另一個(gè)角的2倍時(shí),我們就可以通過轉(zhuǎn)化倍角尋找到等腰三角形.如圖①中,若∠ABC=2∠C,如果作BD平分∠ABC,則△DBC是等腰三角形;如圖②中,若∠ABC=2∠C,如果延長(zhǎng)線CB到D,使BD=BA,連結(jié)AD,則△ADC是等腰三角形;BCDA①②BCDA③BCDA如圖③中,若∠B=2∠ACB,如果以BCDA①②BCDA③BCDADCBA1、如圖,△ABC中,AB=AC,BD⊥AC交AC于D.求證:∠DBC=∠DCBAAABC2、如圖,△ABC中,∠ACB=2∠B,BC=2AC.求證:∠A=90°二、利用角平分線+平行線,構(gòu)造等腰三角形當(dāng)一個(gè)三角形中出現(xiàn)角平分線和平行線時(shí),我們就可以尋找到等腰三角形.如圖①中,若AD平分∠BAC,AD∥EC,則△ACE是等腰三角形;如圖②中,AD平分∠BAC,DE∥AC,則△ADE是等腰三角形;如圖③中,AD平分∠BAC,CE∥AB,則△ACE是等腰三角形;①ADCBE②ECBDA①ADCBE②ECBDABACDE③④ABFCDEG3、如圖,△ABC中,AB=AC,在AC上取點(diǎn)P,過點(diǎn)P作EF⊥BC,交BA的延長(zhǎng)線于點(diǎn)E,垂足為點(diǎn)F.求證:.AE=AP.E圖1ABCD4、如圖,△ABC中,AD平分∠BAC,E、F分別在BD、AD上,且DE=CDE圖1ABCD圖2BFDCAFC圖2BFDCAFCDEBAFBACPE三、利用角平分線+垂線,構(gòu)造等腰三角形當(dāng)一個(gè)三角形中出現(xiàn)角平分線和垂線時(shí),我們就可以尋找到等腰三角形.如圖1中,若AD平分∠BAC,AD⊥DC,則△AEC是等腰三角形.ABCDE5、如圖2,已知等腰Rt△ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延長(zhǎng)線于D。求證:ABCDE四:其他方法總結(jié)1.截長(zhǎng)補(bǔ)短法6、如圖,已知:正方形ABCD中,∠BAC的平分線交BC于E,求證:AB+BE=AC.2.倍長(zhǎng)中線法題中條件若有中線,可延長(zhǎng)一倍,以構(gòu)造全等三角形,從而將分散條件集中在一個(gè)三角形內(nèi)。EABCEABCDF求證:AC=BFAE8、已知△ABC,AD是BC邊上的中線,分別以AB邊、AC邊為直角邊各向外作等腰直角三角形,如圖,求證EF=2AD。AEFFBDCBDC3.平行線法〔或平移法若題設(shè)中含有中點(diǎn)可以試過中點(diǎn)作平行線或中位線,對(duì)Rt△,有時(shí)可作出斜邊的中線.9、△ABC中,∠BAC=60°,∠C=40°AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求證:AB+BP=BQ+AQ.ABCPQABCPQOOABCPQD圖〔1ABCPQDE圖〔2O構(gòu)造全等三角形,即"截長(zhǎng)補(bǔ)短法".⑵本題利用"平行法"解法也較多,舉例如下:如圖〔1,過O作OD∥BC交AC于D,則△ADO≌△ABO來解決.ABCPABCPQ圖〔3DO則△ADO≌△AQO,△ABO≌△AEO來解決.AABCPQ圖〔4DO如圖〔3,過P作PD∥BQ交AB的延長(zhǎng)線于D,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度四方擔(dān)保企業(yè)信用貸款合同范本
- 二零二五年度產(chǎn)業(yè)園區(qū)合伙人入駐管理合同3篇
- 二零二五年度綠色節(jié)能門窗改造工程合同4篇
- 2025年度模特時(shí)尚產(chǎn)品代言合同4篇
- 二零二五年度土地承包權(quán)轉(zhuǎn)讓與農(nóng)村產(chǎn)權(quán)交易服務(wù)合同范本
- 2025年度海上風(fēng)電場(chǎng)建設(shè)與運(yùn)維合同4篇
- 2025年度公共安全項(xiàng)目驗(yàn)收流程及合同法應(yīng)用要求3篇
- 二零二五年度企業(yè)年會(huì)主題服裝租賃合同協(xié)議書4篇
- 2025年度個(gè)人商標(biāo)使用權(quán)授權(quán)委托合同3篇
- 2025年零星勞務(wù)合同模板:全新升級(jí)2篇
- 平安產(chǎn)險(xiǎn)陜西省地方財(cái)政生豬價(jià)格保險(xiǎn)條款
- 銅礦成礦作用與地質(zhì)環(huán)境分析
- 30題紀(jì)檢監(jiān)察位崗位常見面試問題含HR問題考察點(diǎn)及參考回答
- 詢價(jià)函模板(非常詳盡)
- 《AI營(yíng)銷畫布:數(shù)字化營(yíng)銷的落地與實(shí)戰(zhàn)》
- 麻醉藥品、精神藥品、放射性藥品、醫(yī)療用毒性藥品及藥品類易制毒化學(xué)品等特殊管理藥品的使用與管理規(guī)章制度
- 一個(gè)28歲的漂亮小媳婦在某公司打工-被老板看上之后
- 乘務(wù)培訓(xùn)4有限時(shí)間水上迫降
- 2023年低年級(jí)寫話教學(xué)評(píng)語方法(五篇)
- DB22T 1655-2012結(jié)直腸外科術(shù)前腸道準(zhǔn)備技術(shù)要求
- GB/T 16474-2011變形鋁及鋁合金牌號(hào)表示方法
評(píng)論
0/150
提交評(píng)論