北京市朝陽2024年高考數學三模試卷含解析_第1頁
北京市朝陽2024年高考數學三模試卷含解析_第2頁
北京市朝陽2024年高考數學三模試卷含解析_第3頁
北京市朝陽2024年高考數學三模試卷含解析_第4頁
北京市朝陽2024年高考數學三模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市朝陽2024年高考數學三模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為虛數單位,復數,則其共軛復數()A. B. C. D.2.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.3.已知,則()A. B. C. D.4.在一個數列中,如果,都有(為常數),那么這個數列叫做等積數列,叫做這個數列的公積.已知數列是等積數列,且,,公積為,則()A. B. C. D.5.“”是“函數(為常數)為冪函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.已知等差數列中,則()A.10 B.16 C.20 D.247.若復數()是純虛數,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知展開式的二項式系數和與展開式中常數項相等,則項系數為()A.10 B.32 C.40 D.809.設平面與平面相交于直線,直線在平面內,直線在平面內,且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件10.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.11.已知函數,若函數的所有零點依次記為,且,則()A. B. C. D.12.已知復數滿足:(為虛數單位),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知一組數據1.6,1.8,2,2.2,2.4,則該組數據的方差是_______.14.記實數中的最大數為,最小數為.已知實數且三數能構成三角形的三邊長,若,則的取值范圍是.15.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.16.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結論的序號是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.18.(12分)已知橢圓()的離心率為,且經過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.19.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.20.(12分)已知函數.(1)當時,求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.21.(12分)在平面直角坐標系xOy中,曲線C1的參數方程為(φ為參數),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標方程;(2)設M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.22.(10分)已知,,,,證明:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先根據復數的乘法計算出,然后再根據共軛復數的概念直接寫出即可.【詳解】由,所以其共軛復數.故選:B.【點睛】本題考查復數的乘法運算以及共軛復數的概念,難度較易.2、D【解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,

∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,

設正方體的棱長為,則,∴.

取,連接,則共面,在中,設到的距離為,

設到平面的距離為,

.

故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.3、D【解析】

根據指數函數的單調性,即當底數大于1時單調遞增,當底數大于零小于1時單調遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數,又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應用不等式的性質和指對函數的單調性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質得到大小關系,有時可以代入一些特殊的數據得到具體值,進而得到大小關系.4、B【解析】

計算出的值,推導出,再由,結合數列的周期性可求得數列的前項和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點睛】本題考查數列求和,考查了數列的新定義,推導出數列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.5、A【解析】

根據冪函數定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數為冪函數時,,解得或,∴“”是“函數為冪函數”的充分不必要條件.故選:A.【點睛】本題考查了充分必要條件的概念和判斷,冪函數定義的應用,屬于基礎題.6、C【解析】

根據等差數列性質得到,再計算得到答案.【詳解】已知等差數列中,故答案選C【點睛】本題考查了等差數列的性質,是數列的常考題型.7、B【解析】

化簡復數,由它是純虛數,求得,從而確定對應的點的坐標.【詳解】是純虛數,則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數的除法運算,考查復數的概念與幾何意義.本題屬于基礎題.8、D【解析】

根據二項式定理通項公式可得常數項,然后二項式系數和,可得,最后依據,可得結果.【詳解】由題可知:當時,常數項為又展開式的二項式系數和為由所以當時,所以項系數為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細心計算,屬基礎題.9、A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內,所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.10、C【解析】

由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點睛】本題考查了向量共線定理、余弦定理、三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.11、C【解析】

令,求出在的對稱軸,由三角函數的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數周期,令,可得.則函數在上有8條對稱軸.根據正弦函數的性質可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數的對稱性,考查了三角函數的周期性,考查了等差數列求和.本題的難點是將所求的式子拆分為的形式.12、A【解析】

利用復數的乘法、除法運算求出,再根據共軛復數的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復數的四則運算、共軛復數的概念,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、0.08【解析】

先求解這組數據的平均數,然后利用方差的公式可得結果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數據的方差,明確方差的計算公式是求解的關鍵,側重考查數據分析的核心素養(yǎng).14、【解析】試題分析:顯然,又,①當時,,作出可行區(qū)域,因拋物線與直線及在第一象限內的交點分別是(1,1)和,從而②當時,,作出可行區(qū)域,因拋物線與直線及在第一象限內的交點分別是(1,1)和,從而綜上所述,的取值范圍是.考點:不等式、簡單線性規(guī)劃.15、90°【解析】

易得平面PAD,P點在與BA垂直的圓面內運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內運動,易知,當P、、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點睛】本題四棱錐外接球有關的問題,考查學生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.16、①②③【解析】

①點在平面內的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設,則由可得,然后對應邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③【點睛】此題考查立體幾何中的垂直、平行關系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】

(1)根據題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據為銳角三角形,求得,利用三角函數的圖象與性質,即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.【點睛】本題主要考查了利用正弦定理和三角函數的恒等變換求解三角形問題,對于解三角形問題,通常利用正弦定理進行“邊轉角”尋求角的關系,利用“角轉邊”尋求邊的關系,利用余弦定理借助三邊關系求角,利用兩角和差公式及二倍角公式求三角函數值.利用正、余弦定理解三角形問題是高考高頻考點,經常利用三角形內角和定理,三角形面積公式,結合正、余弦定理解題.18、(1)(2)見解析【解析】

(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關于軸對稱,等價于的斜率互為相反數,即,整理.設直線的方程為,與橢圓聯(lián)立,將韋達定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點,滿足直線與直線恰關于軸對稱.設直線的方程為,與橢圓聯(lián)立,整理得,.設,,定點.(依題意則由韋達定理可得,,.直線與直線恰關于軸對稱,等價于的斜率互為相反數.所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當,即時,直線與直線恰關于軸對稱成立.特別地,當直線為軸時,也符合題意.綜上所述,存在軸上的定點,滿足直線與直線恰關于軸對稱.【點睛】本題考查橢圓方程,直線與橢圓位置關系,熟記橢圓方程簡單性質,熟練轉化題目條件,準確計算是關鍵,是中檔題.19、(Ⅰ)(Ⅱ)8【解析】

(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據同角的三角函數的關系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.20、(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數為為,求解不等式可得實數a的取值范圍為試題解析:(I)當時,化為,當時,不等式化為,無解;當時,不等式化為,解得;當時,不等式化為,解得.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論